Abstract:
A drive system for a motor having a rotor and a phase winding (a, b, c) comprises; a drive circuit including switch means associated with the winding a, b, c for varying the current passing through the winding; rotor position sensing means arranged to sense the position of the rotor; control means arranged to provide drive signals to control the switch means; a power input for connection to a power supply at a nominal voltage; and boost means in electric communication with the power input and power output, and controllable to boost the nominal voltage to a higher voltage for application to the winding.
Abstract:
The present invention is directed to a control strategy for operating a plurality of prime power sources during propulsion, idling and braking and is applicable to large systems such as trucks, ships, cranes and locomotives utilizing diesel engines, gas turbine engines, other types of internal combustion engines, fuel cells or combinations of these that require substantial power and low emissions utilizing multiple power plant combinations. The present invention is directed at a general control strategy for multi power plant systems where the power systems need not be of the same type or power rating and may even use different fuels. The invention is based on a common DC bus electrical architecture so that prime power sources need not be synchronized.
Abstract:
The present invention is directed to a means of boosting the voltage output of an alternator utilizing the armature coils of the alternator as part of the boost circuit. This invention can enable refined control strategies for operating a plurality of engine systems during propulsion, idling and braking and is applicable to large systems such as trucks, ships, cranes and locomotives utilizing diesel engines, gas turbine engines, other types of internal combustion engines, fuel cells or combinations of these that require substantial power and low emissions utilizing multiple power plant combinations.
Abstract:
A motor control apparatus includes a direct-current power source and an inverter circuit, which includes a switching element. The motor control apparatus receives a current command value in every control cycle and calculates a current deviation accumulated value by accumulating the current deviation between the received current command value and the actual current value that flows through a coil of a motor. The motor control apparatus then computes a voltage command value in accordance with the current deviation accumulated value and controls the switching timing of the switching element based on the voltage command value. The motor control apparatus judges whether the computed voltage command value exceeds a range of the voltage that can be output from the inverter circuit and causes saturation. If it is judged that the voltage command value is saturated, the motor control apparatus restricts the accumulation of the current deviation.
Abstract:
An electric motor drive controller for an electric vehicle driven by a motor with permanent excitation and powered by an energy source comprises: a power control stage coupleable to the motor for generating a drive signal at a voltage to control the motor at a desired speed; a voltage control circuit connectable between the energy source and the power control stage for controlling the voltage of the drive signal at a first voltage potential in one operating mode and at a voltage potential greater than the first voltage potential in another operating mode; and a mode controller for controlling the operating modes of the voltage control circuit based on properties of the drive signal.
Abstract:
An electric load apparatus (100) includes a DC power source (B), a voltage sensor (10, 20), system relays (SR1, SR2), a capacitor (11, 13), a DC/DC converter (12), an inverter (14), a current sensor (24), a rotation sensor (25), a control apparatus (30), and an AC motor (M1). The control apparatus (30) restricts an increase amount of consumed power in the AC motor (M1) in a range in which the driving operation of the electric load apparatus (100) can be maintained, when the increase amount of the consumed power in the AC motor (M1) exceeds an allowable power that can be supplied from the capacitor (13) to the inverter (14).
Abstract:
This invention comprises a DC motor driving circuit for use with a solar powered heating system and other applications such as solar powered irrigation or pumping. The circuit, in addition to functioning as a DC-to-DC converter between a photovoltaic (PV) power source and a motor, also contains a short term energy storage capability that is used to provide a jolt of current to a stopped motor. The circuit is designed to maximize motor runtime, and to be applicable to the varying internal resistances and pumping loads of a variety of motors.
Abstract:
A motor controller is made up of a power supply circuit rectifying an AC power supply for outputting desired DC voltages while, at the same time, improving the power factor of the AC power supply, and a motor drive circuit for driving a motor. The controller has a rectifier circuit for converting AC power to a DC voltage and a smoothing circuit, a converter circuit constituted of a chopper circuit for controlling the DC voltage by utilizing a switching operation and the energy storing effect of an inductance, a motor drive device made up of an inverter circuit connected to the output of the converter circuit to control a motor, a converter control circuit for controlling the switching operation of the chopper circuit, an inverter control circuit for controlling the switching operation of the inverter circuit thereby driving the motor, a speed detector circuit for detecting a position of the rotor of the motor for calculating the speed of the motor, a speed control circuit receiving the calculated speed value and a speed command value for controlling the motor speed through the inverter circuit, and a DC voltage control circuit receiving the output signal of the speed control circuit for controlling the DC voltage through the converter control circuit in accordance with the output signal. The DC voltage control circuit, when the output of the speed control circuit reaches a predetermined value, outputs a signal to cause the DC voltage to increase or decrease to the converter control circuit. The output of the speed control circuit is a duty ratio signal or a speed deviation signal representing a deviation of the calculated speed value from the speed command value.
Abstract:
A controller for driving permanent magnet type synchronous motor. A motor terminal voltage or IPM (intelligent power module) input voltage necessary to achieve a target operating point is computed based on torque command and motor revolution. When the computed voltage exceeds an actual battery voltage, a booster is inserted between the battery and IPM, and the battery voltage, after being boosted, is applied between the direct current terminals of the IPM. Since the motor terminal voltage can be made so as to not exceed the boosted voltage even if the motor terminal voltage rises along with a rise in revolution and speed voltage, field weakening control becomes unnecessary.
Abstract:
An elevator wherein an electric motor for driving the cage of the elevator is driven by the use of alternating current produced by an inverter, comprising a converter which feeds D.C. power to the inverter and which is so arranged that a plurality of transistors are connected into a bridge corresponding to the number of phases of an A.C. power source connected on the input side of the converter and that diodes are connected to the respective transistors in inverse parallel relationship. In addition, a battery to be used in emergency is connected on the input side of the converter. The converter is controlled in the pulse width modulation in the normal state of the A.C. power source, and the converter connected to the battery is controlled as a chopper during the stoppage of the power source, thereby making it possible to run the elevator at high speed even with the battery of low voltage.