Abstract:
A new water based lubricant composition for cold impact extrusion of spark plug bodies or the like, said composition being free of lower molecular weight flammable aliphatic and alicyclic compounds and comprising: an alkaline soluble thermoplastic acrylic resin binder, polytetrafluoroethylene particulate powder material, an alkaline solubilizing agent to maintain the pH of the composition within the range of approximately 8 to 11, a thickening agent, a defoaming agent, and the balance water; and a novel process of cold forming of metal or steel parts.
Abstract:
Iron-based metallurgical powder compositions are produced by mixing iron-based powder with an improved binder/lubricant that comprises dibasic organic acid and one or more additional components such as solid polyethers, liquid polyethers, and acrylic resin. These novel binder/lubricants impart one or more enhanced green properties to the powder compositions and reduce the ejection force required to remove the compositions from molds and dies.
Abstract:
Provided are methods for fabricating solid lubricant coatings capable of operating over a temperature range of at least 0.degree. to 600.degree. C. One embodiment comprises simultaneously applying a first solid lubricant and a second solid lubricant to a bearing surface, wherein the first solid lubricant has a normal operating temperature range of about -169.degree. to +350.degree. C. and the second solid lubricant has a normal operating temperature range of about 350.degree. to 700.degree. C. A second embodiment comprises applying multiple alternating layers of a first solid lubricant and a second solid lubricant to a bearing surface. A third embodiment comprises applying multiple alternating layers of (1) a first solid lubricant overlaid with a diffusion barrier and (2) a second solid lubricant overlaid with a diffusion barrier to a bearing surface. A fourth embodiment comprises applying at least one matrix layer consisting essentially of a first solid lubricant and a second solid lubricant dispersed in a diffusion barrier matrix to a bearing surface. The first and second solid lubricants in these embodiments are as described above. The diffusion barrier is a metal carbide, metal nitride or the like. The lubricant films prepared according to the invention are able to adapt to environmental changes such as temperature, atmosphere, pressure, radiation levels and the like. The adaptive nature of these lubricant films occurs through changes in crystal structure and reaction between the first and second solid lubricants, both with each other and with the atmosphere.
Abstract:
A low pressure die casting powdery mold releasing agent according to this invention consists of a granulated or powdery mixture of a lubricant, an organic polymer and a metal soap; wherein the lubricant is coated with the organic polymer or the metal soap. Therefore, the mold releasing agent allows productions of castings of high quality, in a squeeze casting work, with good workability and without worsening environmental situations.
Abstract:
A composite, multilayer thin film solid lubricant structure having multiple thin film layers of solid lubricant interleaved by thin film interlayers which interrupt propagation of growth defects in the deposition process.
Abstract:
A noble metal and solid-phase lubricant composition and an an electrically conductive interconductor including the electrically conductive composition are disclosed. The electrically conductive composition includes a noble metal component and a solid-phase lubricant component. The solid-phase lubricant component is present in an amount sufficient to cause the electrically conductive composition to have a coefficient of friction which is significantly lower than the coefficient of friction of the noble metal component without causing the electrically conductive composition to be significantly less malleable than the noble metal component, nor to be significantly less corrosion resistant than the noble metal component. The electrically conductive composition can form a contact layer of the electrically conductive interconnector. The contact layer is bonded to a diffusion barrier which, in turn, is bonded to a bulk electrical conductor of the electrically conductive interconnector.
Abstract:
This invention relates to solutions of alkali metal stearates which remain soluble and stable at room temperature. In particular, the invention relates to an aqueous solution which includes an alkali metal stearate selected from the group consisting of sodium stearate and potassium stearate, and a water soluble nonionic surfactant. More particularly, the invention relates to a solution which when deposited on a substrate forms a stearate-surfactant lubricant layer upon removal of water. The solutions may be used in neat form or delivered as part of an emulsion.
Abstract:
A water washable thermally conductive grease useful for thermal coupling of electronic chips and heat sinks in electronic modules comprises a hydrophilic liquid polymer carrier, an antioxidant, and up to 90 weight percent of a microparticulate thermally conductive filler. In a preferred embodiment, the thixotropic dielectric composition further comprises an ionic surfactant to promote wetting/dispersion of the microparticulate filler. The thermally conductive grease is non-corrosive, resistant to shear induced phase destabilization and capable of being washed from module surfaces with aqueous solutions. Substitution of the present hydrophilic based greases for art-recognized solvent washable greases eliminates use of non-aqueous solvents in electronic module processing/reprocessing operations.
Abstract:
Antifriction material includes sintered intermetallides of copper with zinc and tin, and ultradispersed diamond powder having grain size below 0.1 micrometer.
Abstract:
An aqueous lubrication treatment liquid for a cold plastic working of a metallic material comprises 50 to 400 g/l of a solid lubricant, for example, MoS.sub.2, 1 to 40 g/l of a surfactant, 10 ppm to 5000 ppm, in terms of colloidal titanium compound, water, and optionally, 5 to 150 g/l of a binder and 4 to 160 g/l of a metallic soap. This liquid exhibits a strong bonding to the metallic material and an excellent lubricating property, and prevents rusting of the metallic material.