Abstract:
A stator core comprises a laminated part made by stacking a plurality of sheet-like plates and one sheet-like plate into an integral unit in a manner to form dimple portions on both surfaces in the stacking direction thereof, and side plates each having extended portions and nib portions formed on a surface opposite the side where the extended portions are provided and disposed in a manner to sandwich the both surfaces of the laminated part, wherein the laminated part and the side plates are fastened together by inserting the nib portions on the side plates into the dimple portions formed on the laminated part.
Abstract:
A rotor includes a rotor core fixedly attached to a rotational shaft and having a plurality of hole portions arranged in the circumferential direction, a magnet inserted into a plurality of hole portions each, and a filling portion injected into the hole portion. The filling portion is injected into the hole portion from a gate facing a central part in the width direction of the magnet in the opening of the hole portion.
Abstract:
The laminar article for electrical use comprises a plurality of superposed first metal laminations fixed together. Each of the first laminations is provided with at least one fastener projecting from a first surface thereof and defining a recess in its opposite side. Each fastener of one lamination is arranged to fit into a recess of an adjacent lamination. The article presents second laminations interposed between at least two adjacent first laminations fixed together. The second laminations are provided with through apertures which are traversed by the fasteners which fix the adjacent first laminations together. The method consists of die-cutting a plurality of laminations from a metal sheet, rotating the die-cut laminations and superposing them, to then fix them together in predetermined manner. The laminations can be die-cut with a reference axis thereof rotated through a predetermined angle about a reference axis of the sheet metal, to limit the rotations to be imposed on the laminations during their mutual fixing.
Abstract:
A rotor for a motor includes a plurality of laminations. Each lamination includes a central opening having an outer surface. The outer surface is defined by a continuous non-circular curve. A shaft includes a cylindrical portion configured to engage the outer surface. The cylindrical portion is sized to define an interference fit between the cylindrical portion and at least a portion of the outer surface.
Abstract:
In a rotating machine, a plurality of laminated electromagnetic steel sheets constitutes at least one of a stator and a rotor and a plurality of permanent joining portions to unit each of the laminated electromagnetic steel sheets to form a corresponding one of the stator and the rotor, the plurality of permanent joining portions being set to be located at positions at which an integration value of a magnetic flux density with respect to a plane enclosed with the permanent joining portions is always zeroed.
Abstract:
In a rotating machine, a plurality of laminated electromagnetic steel sheets constitutes at least one of a stator and a rotor and a plurality of permanent joining portions to unit each of the laminated electromagnetic steel sheets to form a corresponding one of the stator and the rotor, the plurality of permanent joining portions being set to be located at positions at which an integration value of a magnetic flux density with respect to a plane enclosed with the permanent joining portions is always zeroed.
Abstract:
A method of manufacture for a stator core including the steps of a) punching a stacked plurality of long bands of sheet steel to form strip laminations having tooth portions and core back portions; and b) spirally winding the strip laminations and integrating the wound strip laminations. The stacked plurality of long bands of sheet steel can be punched over their width such that at least one pair of the strip laminations is formed and two of the strip laminations form a pair by intermeshing the protrusions and recesses of their respective tooth portions.
Abstract:
A method of producing a laminated iron core by punching and laminating rotor and stator core pieces. The rotor core pieces are punched from a metal sheet and laminated. Magnetic pole teeth are roughly punched in the metal sheet with the rotor core pieces removed. Each of a plurality of magnetic pole teeth are pressed at plural different portions to form thin parts so as to develop the plurality of magnetic pole teeth toward the punched side of the rotor core piece. Thereafter, the stator core piece is punched to form front tips on the magnetic pole teeth defining an internal form on the stator core piece. An external form of the stator core piece is punched. The punched stator core pieces are laminated in succession.
Abstract:
A laminated plate assembly in which the laminations in a stack are secured together by means of one or more interlocks or tabs that project from the uppermost lamination in the assembly through holes or slots in all the other laminations in the assembly, or around the periphery of the other laminations in the assembly, with each tab being bent or pressed against the underside of the bottom lamination in the assembly. This secures all the laminations in the stack together, much like a staple secures papers in a stack together, allowing for additional handling and processing of the laminated plate assembly without concern that the laminated plates in the stack will become misaligned or even become removed from the stack.
Abstract:
In a method of producing an iron core by punching and laminating stator core pieces and rotor core pieces from the same metal sheet, it is an object of the invention that magnetic pole teeth of the roughly punched stator core pieces are caused to stably develop by pressing toward space sides made by previously punching the rotor core pieces so as to sufficiently secure punching margins for pressing out the front tips of the magnetic pole teeth of the internal forms of the stator core pieces and the punching can be performed without obstacles even if a gap with the rotor core pieces is small, and further ruggedness formed on a surface of the metal sheet by pressing does not cause disturbances in a flow of magnetic flux. The method comprises punching the rotor core pieces from metal sheets and laminating them, roughly punching the magnetic pole teeth 7 of the stator core pieces from said metal sheets already punched of the rotor pieces, changing positions of the magnetic pole teeth 7, pressing on a plurality of parts thereof to reduce the thickness, developing them toward the punched sides of the rotor core pieces for forming the thin part ranges 10, 11, subsequently punching to form the front tips 8 of the magnetic pole teeth composing edge parts of the internal forms of the stator core pieces, punching the external forms of the stator core pieces and laminating them.