Abstract:
The present invention relates to a method for programming an industrial robot comprising a manipulator (1 ) movable about a plurality of axes and a robot controller (2) controlling the movements of the manipulator and configured to switch between a position control mode and a floating control mode in which the manipulator has a reduced stiffness in at least one of the axes or in at least one Cartesian direction or orientation, wherein the method comprises: - switching the robot controller to the floating control mode, and - programming the robot by means of lead-through of the robot while at the same time the controller is in the floating control mode.
Abstract:
A process turning disc (1), connectable to an output shaft of a motor (21) by means of which the process turning disc (1) is rotatable about a first centre axis (13) of the process turning disc, and configured for guiding a cable (2) or hose, comprising a first flange (3; 33) connectable to an end part (4) of a robot arm (5) and a second flange (6; 36) connectable to a tool element (7). The flanges (3, 6; 33, 36) are spaced apart from each other by an intermediate connecting member (8; 38), the connecting member (8; 38) being connected to the flanges (3, 6; 33, 36), and the connecting member (8; 38) providing a passage (9; 39) between the flanges, which passage (9; 39) is configured for receiving and guiding the cable/hose (2) and said passage having an inlet side (11; 41) for the cable/hose and an outlet side (12; 42) for the cable/hose (2). The invention also defines a robot arm comprising such a process turning disc, a robot comprising such a robot arm and the use of such a process turning disc.
Abstract:
An apparatus (1) and a method for performing consecutive operations on products (2) is described. The apparatus (1) comprises a conveyor (3) for transportation of the products (2) along a series of stations (5, 6) positioned along the conveyor (3), wherein at least one of the stations (5, 6) is an automatic station (6). The apparatus (1) comprises at least one variable speed mechanism (8), which is arranged to move a product (2) from the conveyor (3) to an automatic station (6) and to return the product (2) to the conveyor (3) after the performance of the operations at the automatic station (6), wherein the variable speed mechanism (8) is arranged to move the product (2) at a lower speed than the conveyor (3) during performance of the operations at the automatic station (6).
Abstract:
The present invention relates to a method and a system for facilitating calibration of a robot cell including one or more objects (8) and an industrial robot (1,2,3) performing work in connection to the objects, wherein the robot cell is programmed by means of an off-line programming tool including a graphical component for generating 2D or 3D graphics based on graphical models of the objects. The system comprises a computer unit (10) located at the off-line programming site and configured to store a sequence of calibration points for each of the objects, and to generate a sequence of images (4) including graphical representations of the objects to be calibrated and the calibration points in relation to the objects, and to transfer the images to the robot, and that the robot is configured to display said sequence of images to a robot operator during calibration of the robot cell so that for each calibration point a view including the present calibration point and the object to be calibrated is displayed to the robot operator.
Abstract:
The present invention relates to a method and a system for determining the relation between a local coordinate system located in the working range of an industrial robot (1) and a robot coordinate system. The method comprises: attaching a first calibration object (10) in a fixed relation to the robot, determining the position of the first calibration object in relation to the robot, locating at least three second calibration objects (14, 15, 16) in the working range of the robot, wherein at least one of the calibration objects is a male calibration object having a protruding part shaped as a sphere, and at least one of the calibration objects is a female calibration object comprising at least two nonparalIeI, inclining surfaces arranged to receive the sphere so that the sphere is in contact with the surfaces in at least one reference position, determining a reference position for each of the second calibration objects in the local coordinate system, for each second calibration object moving the robot until the sphere is in mechanical contact with the surfaces of the calibration object, reading the position of the robot when the sphere is in mechanical contact with all of the surfaces, and calculating the relation between the local coordinate system and the robot coordinate system based on the position of the first calibration object in relation to the robot, the reference positions of the second calibration objects in the local coordinate system, and the positions of the robot when the sphere is in mechanical contact with the surfaces of the second calibration objects.
Abstract:
Die Erfindung betrifft ein Roboterwerkzeug (22) zum Bearbeiten von Werkstücken (16) mit einem Anschlusselement für eine Verbindung mit einem Roboter, bei dem eine Schneidklinge (28) durch ein Halteelement (24) in einer vorgegebenen Position gehalten ist, wobei das Halteelement durch das Anschlusselement mit dem Roboter verbindbar ist.
Abstract:
The invention relates to a robot tool for machining workpieces, comprising a connecting element for connection to a robot. The invention is characterized in that a cutting blade is maintained in a predetermined position by a retaining element, said retaining element being connectible to the robot by means of the connecting element.
Abstract:
The present invention relates to an apparatus and a method for automatically calibrating a linear track (20) along which a device is moving while it is performing work. The method comprises: moving a mechanical unit (18), provided with a first angle- measuring sensor (1) arranged for measuring an angle relative to the vertical line about a first measuring axis and a second angle-measuring sensor (2) arranged for measuring an angle relative to the vertical line about a second measuring axis essentially perpendicular to the measuring axis of the first angle-measuring sensor, along the track, receiving angular measurements from both angle-measuring sensors for a plurality of locations along the track, and calculating vertical changes in position along the length of the track for both sides of the track based on the received angular measurements from both angle-measuring sensors.
Abstract:
The present invention relates to a method and an apparatus for compensating for errors in a certain number of degrees of freedoms in the geometric relation between a work object (1) and a device (2) holding the object. A measurement system including at least one sensor (3) is providing surface measurements on the object. The method comprises measuring a first reference surface (10) of a reference object, calculating the position and orientation of the first reference surface based on the measurements, moving the reference object in a first degree of freedom, measuring on the first reference surface, calculating the position and orientation of the first reference surface after the moving based on the measurements, repeating those steps for at least the same number of degrees of freedom as the number of degrees of freedom in which the object may have errors in relation to the device, performing the same procedure for at least two more reference surfaces (11, 12, 13), calculating the position and orientation changes of all the reference surfaces, and calculating a relationship between the calculated position and orientation changes and corresponding changes of the position and orientation of the object. Using the relationship for compensating for the errors in object position and orientation.
Abstract:
The present invention relates to a robot teach pendant unit (2) coupled to a programmable robot controller (1 ), the teach pendant comprising a graphical screen (6), and a native user interface program (9) which creates a graphical user interface and displays the user interface on the graphical screen. The robot teach pendant further comprises a processing component (10) capable of receiving an application including one or more animated graphical objects, instructions for displaying the animated objects on the graphical screen, information on the behavior of the animated graphical objects, and instructions on how the user can interact with the animated graphical objects, and the processing component is configured to display the animated graphical objects on the screen and to set up a sandbox providing an isolation mechanism for safely running the application without disturbing the execution of normal teach pendant operations, and said user interface program is programmed to host directly the processing component and instructing it to load and display the application containing the animated graphical objects.