Abstract:
An apparatus and method are provided for controlling a wireless feeder network used to couple access base stations of an access network with a communications network. The wireless feeder network comprises a plurality of feeder base stations coupled to the communications network and a plurality of feeder terminals coupled to associated access base stations. Each feeder terminal has a feeder link with a feeder base station, and the feeder links are established over a wireless resource comprising a plurality of resource blocks. Sounding data obtained from the wireless feeder network is used to compute an initial global schedule to allocate to each feeder link at least one resource block, and the global schedule is distributed whereafter the wireless feeder network operates in accordance with the currently distributed global schedule to pass traffic between the communications network and the access base stations. Using traffic reports received during use, an evolutionary algorithm is applied to modify the global schedule, with the resultant updated global schedule then being distributed for use. This enables the allocation of resource blocks to individual feeder links to be varied over time taking account of traffic within the wireless feeder network, thereby improving spectral efficiency.
Abstract:
An apparatus and method are provided for configuring a communication link. The apparatus has a plurality of antenna elements to support RF communication over a communication link using a plurality of frequency channels, a plurality of RF processing circuits, and configuration circuitry to apply a selected configuration from a plurality of different configurations, where each configuration identifies which RF processing circuit each antenna element is coupled to, and which frequency channel is allocated to each RF processing circuit. The configuration circuitry is arranged to employ a reinforcement learning process in order to dynamically alter which of the plurality of different configurations to apply as a currently selected configuration. The reinforcement learning process comprises maintaining a future rewards record having a plurality of entries, where each entry maintains, for an associated combination of link state and configuration, an estimated future rewards indication determined using a discounted rewards mechanism. A selection policy is employed to select a configuration for a current link state, and then a new reward is observed that is dependent on how the selected configuration alters a chosen performance metric for the communication link. The estimated future rewards indication in the associated entry is then updated in dependence on the new reward. The updating comprises, when the associated entry is first encountered following a reset event, the storing in the associated entry of a predicted estimated future rewards indication generated by assuming, when using the discounted rewards mechanism, that all rewards that will be used in future to update the estimated future rewards indication in the associated entry will have the same value as the new reward.
Abstract:
A technique is provided for tuning the resonance frequency of an electric-based antenna formed by a radiator element coupled to an antenna ground plane. The disclosed method comprises providing a plurality of parasitic capacitive elements extending in an electric field direction of the electric-based antenna so as to lower the resonance frequency of the electric-based antenna below a desired resonance frequency. The electric-based antenna is then integrated within a deployment environment of interest, and thereafter an indication of an actual frequency response of the electric-based antenna within the deployment environment is obtained. One or more of the parasitic capacitive elements may then be removed so as to adjust the actual resonance frequency towards the desired resonance frequency. By such an approach, a significant degree of adjustment in the resonance frequency of the antenna can be made after the antenna has been integrated within the deployment environment.
Abstract:
An apparatus and method are described for facilitating communication between a telecommunications network and a user device within a building. The apparatus has a first unit for mounting adjacent an external surface of a building, and a second unit for mounting adjacent an internal surface of the building so as to be separated from the first unit via an interface structure of the building, for example a window. The first unit has an antenna system to communicate with the telecommunications network over an external wireless communications link that employs signals in a frequency range that is attenuated by the interface structure to a degree inhibiting reception of the signals by a user device within the building. The apparatus further comprises access circuitry for provision within the building to provide an internal communications link with the user device, and the first unit comprises first transducer circuitry coupled to the antenna system whilst the second unit provides second transducer circuitry coupled to the access circuitry. The first and second transducer circuits are then arranged to cooperate to establish a direct wireless communications link through the interface structure between the first and second transducer circuits, to facilitate communication between the antenna system and the access circuitry. This hence enables a reliable connection to be established between the telecommunications network and a user within the building.
Abstract:
An antenna apparatus for use in a wireless network and method of operating such an antenna apparatus are provided. The antenna apparatus has plural omnidirectional antenna elements and plural RF chains, where there are fewer RF chains than omnidirectional antenna elements. A subset of the plural omnidirectional antenna elements are coupled to the plural RF chains and sampling circuitry coupled to the plural RF chains samples the signals received by the subset of the plural omnidirectional antenna elements. This forms part of a signal detection process in which different subsets of the plural omnidirectional antenna elements are iteratively coupled to the plural RF chains. A signal sample spatial covariance matrix for the plural omnidirectional antenna elements is constructed from the signals sampled by the sampling circuitry at each iteration and a beamforming algorithm applied to the signal sample spatial covariance matrix parameterises the signals received by the plurality of omnidirectional antenna elements.
Abstract:
There is provided an apparatus comprising a location receiver to receive a signal indicative of a location of the location receiver. A movement mechanism rotates the location receiver about an axis and provides an angle of the location receiver about the axis from a known point. Calculation circuitry produces an output value indicative of an absolute bearing of the known point about the axis, based on a plurality of given angles of the location receiver about the axis from the known point, and a plurality of associated locations of the location receiver indicated by the signal received when the location receiver is at each of the given angles.
Abstract:
A wireless feeder network comprises feeder base stations coupled to the communications network and feeder terminals coupled to associated access base stations of the access network. A group of wireless network components form elements of a feeder cluster and the elements of the feeder cluster are connected by an additional communications resource configured to be operated in parallel with the wireless resource of the wireless feeder network. Both a primary and secondary element of the feeder cluster seek to decode at least one resource block allocated to the primary element for reception of data. Information derived from the secondary decoded data is transmitted from the secondary element to the primary element via the additional communications resource. The primary element then performs a revised decoding process additionally using the information received from said secondary element to improve its own decode probability.
Abstract:
An apparatus and method are provided for controlling a wireless feeder network used to couple access base stations of an access network with a communications network, the wireless feeder network connecting a plurality of feeder base stations coupled to the communications network and a plurality of feeder terminals coupled to associated access base stations, each feeder terminal having a feeder link with a feeder base station, and the feeder links being established over a wireless resource comprising a plurality of resource blocks. The method comprises the steps of: allocating resource blocks for use by the plurality of feeder base stations and the plurality of feeder terminals to establish the feeder links, wherein the resource blocks are allocated between a centrally administered schedule in which each resource block is associated with a predetermined feeder link and at least one feeder base station administered schedule in which a set of resource blocks is associated with a predetermined feeder base station, the predetermined feeder base station being configured to implement the feeder base station administered schedule dynamically by using the set of resource blocks in dependence on current traffic requirements of the predetermined feeder base station; monitoring network traffic being carried by the feeder links to determine at least one characteristic of the network traffic; and re-allocating the resource blocks between the centrally administered schedule and the at least one feeder base station administered schedule in dependence on the at least one characteristic of the network traffic.
Abstract:
An apparatus and method are provided for controlling a wireless feeder network which connects access base stations to a communications network. The wireless feeder network comprises a plurality of feeder base stations connected to the communications network and a plurality of feeder terminals connected to the plurality of access base stations. A sounding schedule is determined for the wireless feeder network in dependence on a visibility matrix,the visibility matrix indicative of visibility via the wireless feeder network between each of the plurality of feeder base stations and each of the plurality of feeder terminals. Then a sounding procedure within the wireless feeder network is controlled in accordance with the sounding schedule. The visibility matrix enables a coordinated sounding procedure to be carried out, allowing more accurate channel metrics for the wireless channels of the network to be determined which are not adversely affected by interference between elements of the network.
Abstract:
A point to multipoint device for use in a wireless network to provide wireless communication with a plurality of telecommunications units is described. The point to multipoint device has training sequence storage for storing a training sequence indication indicating a training sequence associated with the point to multipoint device. Repetition rate storage is also provided for storing a repetition rate at which the training sequence is to be repeated in the sequence of communication channels, the repetition rate being the same for all point to multipoint devices in the wireless network. An interface receives a synchronisation signal issued to all point to multipoint devices in the wireless network, with the synchronisation signal being used to determine a time at which a first occurrence of the training sequence is to occur within the sequence of communication channels.