Abstract:
The disclosed embodiments provide a method and apparatus for optimizing power efficiency in liquid crystal displays. A microprocessor or embedded microcontroller associated with circuit control modules eliminates redundancy by allowing a single inverter to equalize the intensity of illumination for an array of multiple CCFLs. The microcontroller optimizes power management by continuously sensing the operating currents of every lamp and automatically adjusts for variations in illumination of individual lamps by parallel switching of capacitance that ensures an equal current is applied to each lamp. The microcontroller produces the appropriate control signals and executes a digital servo control algorithm to modify the currents for carrying out the luminance adjustments.
Abstract:
The present invention provides an apparatus and a method for digital control of a backlight system in an LCD display. More specifically, the system utilizes a control system in embedded firmware and a mixed signal micro controller unit (MCU) to allow servo digital control of the operation of the backlight system. The MCU provides multiple input and output ports. The ports operate digital and analog signals, which connect a processor to the backlight system and allow the processor to operate the functions of the inverter and the lamps. The embedded firmware control implements digital servo functions and several algorithms used to precisely and automatically set lamp operation, control individual lamps, compensate for aging, perform diagnostics, optimize power consumption and automate manufacturing tests.
Abstract:
The invention presents a method that calibrates the laser optical power (202) in a continuous manner without disrupting the flow of information in the optical communications link. The method utilizes knowledge of the measured value of the laser optical power(202) and makes necessary adjustments to optimize the values of the Extinction Ratio, Bit Error Rate and to compensate for aging. The method utilizes knowledge of the temperature from a sensor (114) and mathematical models, which contain parameters which are updated for a specific laser configuration.
Abstract:
The present invention provides for a method for configuring a laser operating system. More specifically, the system utilizes a graphical user interface (GUI) to allow an operator to interact with an embedded controller and set parameters for an optical communications transceiver. The system adjusts parameters such as laser bias and modulation currents, wavelength, qualification tests, and file management “the GUI (100) manages configurations of a transceiver operating system”. The system provides for an efficient method to design a laser transceiver and to perform and manage qualification tests. The embedded controller may contain a real time operating system that controls multiple functions in the transceiver and an optical channel. The GUI interacts with an operating system to download embedded firmware into an embedded micro controller unit “MCU”. Downloading of firmware allows for multiple special programs from different sources to be integrated.
Abstract:
A computer system (100) configured with an optical bus architecture is disclosed herein. The computer system (100)includes a processing unit (102) in electrical communication with a first optical bus interface.(104) The computer system further includes a functional device (118) in electrical communication with a second optical bus interface.(110c) An optical communication channel (106) extends between the first optical bus interface (104) and the second optical bus interface.(110c)
Abstract:
The present invention provides for a method for configuring a laser operating system. More specifically, the system utilizes a graphical user interface (GUI) to allow an operator to interact with an embedded controller and set parameters for an optical communications transceiver. The system adjusts parameters such as laser bias and modulation currents, wavelength, qualification tests, and file management “the GUI (100) manages configurations of a transceiver operating system”. The system provides for an efficient method to design a laser transceiver and to perform and manage qualification tests. The embedded controller may contain a real time operating system that controls multiple functions in the transceiver and an optical channel. The GUI interacts with an operating system to download embedded firmware into an embedded micro controller unit “MCU”. Downloading of firmware allows for multiple special programs from different sources to be integrated.
Abstract:
A system contains a laser output measurement circuit used in a laser control system (210). The circuits contain a photodiode sensor (109), sample and hold amplifier (202), IC with synchronizer and delay circuits (206), and an analog to digital converter (204). The circuits measure the laser light output (107) while the laser Module (106) transmits signals. The measurement circuit tracks and stores the laser light output (107) signal using a Photodiode Sensor (109) and with a Sample/hold (202). The methods calculate the value of the laser light output (107) from mathematical relationships, which correlate the light output (107) of the laser Module (106) to the current value of the drive signal (100). Some of the distinguishing features in the present invention are 1) feedback information from the photodiode is obtained in a synchronous manner as a snapshot of the laser performance, and 2) the measurements are precise and calibrated, and 3) no disruption of the signal transmission occurs.
Abstract:
An electrical circuit includes a switch having an on state and an off state for connecting a single drive current power source in series with an electroluminescent device for each electroluminescent device of an electroluminescent device array to conduct a first drive current through the electroluminescent device in the on state. The switch connects an amplitude shift load in series with the electroluminescent device and the drive current power source to conduct a second drive current through the electroluminescent device in the off state. The first drive current and the second drive current constitute an amplitude shift modulated drive current through the electroluminescent device. A control signal generator receives a digital switch command for each electroluminescent device from an electroluminescent device controller and generates an amplitude shift control signal to cause the switch to switch between the on state and the off state for regulating an average of the amplitude shift modulated drive current.
Abstract:
The invention presents a method that calibrates the laser optical power (202) in a continuous manner without disrupting the flow of information in the optical communications link. The method utilizes knowledge of the measured value of the laser optical power (202) and makes necessary adjustments to optimize the values of the Extinction Ratio, Bit Error Rate and to compensate for aging. The method utilizes knowledge of the temperature from a sensor (114) and mathematical models, which contain parameters which are updated for a specific laser configuration.
Abstract:
A computer system configured with an optical bus architecture is disclosed herein. The computer system includes a processing unit in electrical communication with a first optical bus interface. The computer system further includes a functional device in electrical communication with a second optical bus interface. An optical communication channel extends between the first optical bus interface and the second optical bus interface.