31.
    发明专利
    未知

    公开(公告)号:DE69428725D1

    公开(公告)日:2001-11-22

    申请号:DE69428725

    申请日:1994-03-16

    Abstract: A teleconferencing system that integrates separate real-time and asynchronous networks - the former for real-time audio and video, and the latter for control signals and textual, graphical and other data - in a manner which closely approximates the experience of face-to-face collaboration. The system provides an audio/video (AV) path (13) for carrying AV signal among the workstations, a video mosaic generator (36) for combining images, and an audio summer or mixer (38). At least part of the AV path (13b) is implemented with unshielded twisted pair wiring. The system architecture is readily scalable to the largest enterprise network environments. It accommodates differing levels of collaborative capabilities available to individual users and permits high-quality audio and video capabilities to be readily superimposed onto existing personal computers and workstations (12) and their interconnecting LANs (10) and WANs (15). In the case of a plurality of geographically dispersed LANs (10) interconnected by a WAN (15), the demands made on the WAN are significantly reduced by employing multi-hopping techniques, including avoiding the unnecessary decompression of data at intermediate hops, as well as video mosaicing and cut-and-paste technology.

    32.
    发明专利
    未知

    公开(公告)号:DE69426456T2

    公开(公告)日:2001-07-26

    申请号:DE69426456

    申请日:1994-10-03

    Abstract: A teleconferencing system that integrates separate real-time and asynchronous networks - the former for real-time audio and video, and the latter for control signals and textual, graphical and other data - in a manner which closely approximates the experience of face-to-face collaboration. The system provides an audio/video (AV) path (13) for carrying AV signal among the workstations, a video mosaic generator (36) for combining images, and an audio summer or mixer (38). At least part of the AV path (13b) is implemented with unshielded twisted pair wiring. The system architecture is readily scalable to the largest enterprise network environments. It accommodates differing levels of collaborative capabilities available to individual users and permits high-quality audio and video capabilities to be readily superimposed onto existing personal computers and workstations (12) and their interconnecting LANs (10) and WANs (15). In the case of a plurality of geographically dispersed LANs (10) interconnected by a WAN (15), the demands made on the WAN are significantly reduced by employing multi-hopping techniques, including avoiding the unnecessary decompression of data at intermediate hops, as well as video mosaicing and cut-and-paste technology.

    SCALABLE NETWORKED MULTIMEDIA SYSTEM AND APPLICATIONS

    公开(公告)号:CA2308147A1

    公开(公告)日:1999-05-14

    申请号:CA2308147

    申请日:1998-11-04

    Abstract: A networked multimedia system (10) comprises a plurality of networks (40) and at least one storage server (100). A signal path interconnects the workstations (12) and the storage server (100). Each workstation (40) includes video and audio reproduction capabilities, as well as video and audio capture capabilities. Any given storage server (100) comprises a set of storage cells (120) that operate under the direction of a storage cell manager (160). A storage cell (120) may include one or more encoding (132) and transcoding converters configured to convert or transform audio and video signals originating at a workstation into a form suitable for storage. A storage cell (120) may further include one or more decoding converters (134) configured to convert stored signals into a form suitable for audio and video signal reproduction at a workstation. Each storage cell (120) additionally includes at least one storage device (150) and storage device controller (152) capable of storing, for later retrieval, signals generated by one or more converters. The storage cell controller responds to signals received from the workstations (40), and oversees the operation of the storage cells to facilitate the storage of converted audio and video signals in at least one file that can be simultaneously accessed by one or more application programs executing on one or more workstions

    36.
    发明专利
    未知

    公开(公告)号:DE69434762D1

    公开(公告)日:2006-07-20

    申请号:DE69434762

    申请日:1994-10-03

    Abstract: A teleconferencing system that integrates separate real-time and asynchronous networks - the former for real-time audio and video, and the latter for control signals and textual, graphical and other data - in a manner which closely approximates the experience of face-to-face collaboration. The system provides an audio/video (AV) path (13) for carrying AV signal among the workstations, a video mosaic generator (36) for combining images, and an audio summer or mixer (38). At least part of the AV path (13b) is implemented with unshielded twisted pair wiring. The system architecture is readily scalable to the largest enterprise network environments. It accommodates differing levels of collaborative capabilities available to individual users and permits high-quality audio and video capabilities to be readily superimposed onto existing personal computers and workstations (12) and their interconnecting LANs (10) and WANs (15). In the case of a plurality of geographically dispersed LANs (10) interconnected by a WAN (15), the demands made on the WAN are significantly reduced by employing multi-hopping techniques, including avoiding the unnecessary decompression of data at intermediate hops, as well as video mosaicing and cut-and-paste technology.

    37.
    发明专利
    未知

    公开(公告)号:DE69432803T2

    公开(公告)日:2004-04-08

    申请号:DE69432803

    申请日:1994-10-03

    Abstract: A teleconferencing system that integrates separate real-time and asynchronous networks - the former for real-time audio and video, and the latter for control signals and textual, graphical and other data - in a manner which closely approximates the experience of face-to-face collaboration. The system provides an audio/video (AV) path (13) for carrying AV signal among the workstations, a video mosaic generator (36) for combining images, and an audio summer or mixer (38). At least part of the AV path (13b) is implemented with unshielded twisted pair wiring. The system architecture is readily scalable to the largest enterprise network environments. It accommodates differing levels of collaborative capabilities available to individual users and permits high-quality audio and video capabilities to be readily superimposed onto existing personal computers and workstations (12) and their interconnecting LANs (10) and WANs (15). In the case of a plurality of geographically dispersed LANs (10) interconnected by a WAN (15), the demands made on the WAN are significantly reduced by employing multi-hopping techniques, including avoiding the unnecessary decompression of data at intermediate hops, as well as video mosaicing and cut-and-paste technology.

    38.
    发明专利
    未知

    公开(公告)号:DE69431525T2

    公开(公告)日:2003-06-05

    申请号:DE69431525

    申请日:1994-03-16

    Abstract: A teleconferencing system that integrates separate real-time and asynchronous networks - the former for real-time audio and video, and the latter for control signals and textual, graphical and other data - in a manner which closely approximates the experience of face-to-face collaboration. The system provides an audio/video (AV) path (13) for carrying AV signal among the workstations, a video mosaic generator (36) for combining images, and an audio summer or mixer (38). At least part of the AV path (13b) is implemented with unshielded twisted pair wiring. The system architecture is readily scalable to the largest enterprise network environments. It accommodates differing levels of collaborative capabilities available to individual users and permits high-quality audio and video capabilities to be readily superimposed onto existing personal computers and workstations (12) and their interconnecting LANs (10) and WANs (15). In the case of a plurality of geographically dispersed LANs (10) interconnected by a WAN (15), the demands made on the WAN are significantly reduced by employing multi-hopping techniques, including avoiding the unnecessary decompression of data at intermediate hops, as well as video mosaicing and cut-and-paste technology.

    39.
    发明专利
    未知

    公开(公告)号:DE69428725T2

    公开(公告)日:2002-07-11

    申请号:DE69428725

    申请日:1994-03-16

    Abstract: A teleconferencing system that integrates separate real-time and asynchronous networks - the former for real-time audio and video, and the latter for control signals and textual, graphical and other data - in a manner which closely approximates the experience of face-to-face collaboration. The system provides an audio/video (AV) path (13) for carrying AV signal among the workstations, a video mosaic generator (36) for combining images, and an audio summer or mixer (38). At least part of the AV path (13b) is implemented with unshielded twisted pair wiring. The system architecture is readily scalable to the largest enterprise network environments. It accommodates differing levels of collaborative capabilities available to individual users and permits high-quality audio and video capabilities to be readily superimposed onto existing personal computers and workstations (12) and their interconnecting LANs (10) and WANs (15). In the case of a plurality of geographically dispersed LANs (10) interconnected by a WAN (15), the demands made on the WAN are significantly reduced by employing multi-hopping techniques, including avoiding the unnecessary decompression of data at intermediate hops, as well as video mosaicing and cut-and-paste technology.

    40.
    发明专利
    未知

    公开(公告)号:AT215288T

    公开(公告)日:2002-04-15

    申请号:AT98120171

    申请日:1994-10-03

    Abstract: A teleconferencing system that integrates separate real-time and asynchronous networks - the former for real-time audio and video, and the latter for control signals and textual, graphical and other data - in a manner which closely approximates the experience of face-to-face collaboration. The system provides an audio/video (AV) path (13) for carrying AV signal among the workstations, a video mosaic generator (36) for combining images, and an audio summer or mixer (38). At least part of the AV path (13b) is implemented with unshielded twisted pair wiring. The system architecture is readily scalable to the largest enterprise network environments. It accommodates differing levels of collaborative capabilities available to individual users and permits high-quality audio and video capabilities to be readily superimposed onto existing personal computers and workstations (12) and their interconnecting LANs (10) and WANs (15). In the case of a plurality of geographically dispersed LANs (10) interconnected by a WAN (15), the demands made on the WAN are significantly reduced by employing multi-hopping techniques, including avoiding the unnecessary decompression of data at intermediate hops, as well as video mosaicing and cut-and-paste technology.

Patent Agency Ranking