Abstract:
A process for preparing nanoparticles and microparticles is provided. The process involves forming a mixture of a polymer and a solvent, wherein the solvent is present in a continuous phase and introducing the mixture into an effective amount of a nonsolvent to cause the spontaneous formation of microparticles.
Abstract:
Biodegradable, protein microspheres for in vivo release of a biologically active agent, as well as agricultural and environmental applications. The microspheres can be administered orally, intravenously, or subcutaneously for subsequent release. By selecting particular size ranges and the specific protein used to form the microsphere, it is possible to target the microspheres to a cell types such as macrophages, or to effect localized absorption of the microspheres to regions such as the mucosal membranes of the mouth, gastrointestinal tract, or urogenital areas. Larger forms of the microspheres can also be made using standard techniques of the desirable degradation properties.
Abstract:
Protein microspheres are formed by phase separation in a non-solvent followed by solvent removal. The preferred proteins are prolamines, such as zein, that are hydrophobic, biodegradable, and can be modified proteolytically or chemically to endow them with desirable properties, such as a selected degradation rate. Composite microspheres can be prepared from a mixture of proteins or a mixture of proteins with one or more bioerodible polymeric materials, such as polylactides. Protein coatings can also be made. Compounds are readily incorporated into the microspheres for subsequent release. The process does not involve agents which degrade most labile proteins. The microspheres have a range of sizes and multiple applications, including drug delivery and delayed release of pesticides, fertilizers, and agents for environmental cleanup. Selection of microsphere size in the range of less than five microns and mode of administration can be used to target the microparticles to the cells of the reticuloendothelial system, or to the mucosal membranes of the mouth or gastrointestinal tract. Larger implants formed from the microspheres can also be utilized, especially for agricultural applications.
Abstract:
A method for preparing hydroxamic acid polymers from primary amide polymers wherein polyvinyl monomers such as polyacrylamide are reacted with hydroxyl amine in aqueous solution at room temperature. The low reaction temperature is crucial to producing a high yield (70%) of polymer with hydroxamic acid groups and having a low carboxylic acid content (less than 15%, preferably less than 3%). The polymers display high metal affinity over a broad pH range.The polymers are particularly useful for biomedical applications due to the low carboxylic acid content and for the removal and purification of metals due to the high binding constants and rapid reaction rates.
Abstract:
A method for synthetizing polyanhydrides in solution using coupling agents and a removable acid acceptor to effect a one-step polymerization of dicarboxylic acids. As used in the method, these coupling agents include phosgene, diphosgene, and acid chlorides. Insoluble acid acceptors include insoluble polyamines and crosslinked polyamines such as polyethyleneimine and polyvinylpyridine and inorganic bases such as K.sub.2 CO.sub.3, Na.sub.2 CO.sub.3, NaHCO.sub.3, and CaCO.sub.3. The only byproduct formed is a removable hydrochloric acid-acid acceptor.Examples are provided of the polymerization of highly pure polyanhydrides using phosgene, diphosgene or an acid chloride as the coupling agent, in combination with either an insoluble acid acceptor or a soluble acid acceptor in a solvent wherein the polymerizaiton byproduct or polymer is insoluble.A particularly important application of these polyanhydrides is in the formation of drug delivery devices containing bioactive compounds. The method is also useful in the polymerization of dicarboxylic acids including heat liable dipeptides of glutamic or aspartic acid.
Abstract translation:使用偶联剂和可除去的酸受体在溶液中合成聚酐以实现二羧酸的一步聚合的方法。 如该方法所用,这些偶联剂包括光气,双光气和酰氯。 不溶性酸受体包括不溶性多胺和交联聚胺如聚乙烯亚胺和聚乙烯吡啶以及无机碱如K 2 CO 3,Na 2 CO 3,NaHCO 3和CaCO 3。 形成的唯一副产物是可除去的盐酸酸受体。 提供了使用光气,双光气或酰氯作为偶联剂的高纯度聚酐与在溶剂中的不溶性酸受体或可溶性酸受体组合的聚合反应,其中聚合物副产物或聚合物是不溶的。 这些多酸酐的特别重要的应用是形成含有生物活性化合物的药物递送装置。 该方法也可用于二羧酸的聚合,包括谷氨酸或天冬氨酸的热应答二肽。
Abstract:
Diuretic bioactivity profiles of phase inversion micronized furosemide and furosemide co-precipitated with Eudragit L100, and mixtures of those formulations with stock furosemide, reduced or eliminated the rapid spike in diuresis associated with immediate release formulations and maintained cumulative urine output. Of the formulations tested, each of a mixture of micronized furosemide with stock furosemide, and Eudragit L100 polymer with stock furosemide demonstrated optimal diuretic bioactivity profiles in subjects.
Abstract:
Nanoparticles, compositions, and methods for the improved uptake of active agents are disclosed herein. The compositions contain a monodisperse population of nanoparticles, preferably including an active agent, where the nanoparticles are formed from a polymeric material possessing specified bioadhesion characteristics. Following enteral administration, preferably oral administration, the nanoparticles exhibit total intestinal uptakes of greater than 20%, preferably greater than 45%, more preferably greater than 65%. When compared to uptake of the same composition in the absence of the bioadhesive polymeric material, the nanoparticles have significantly increased uptake with intestinal uptake of the increased by more than 100%, preferably even greater than 500%. Further disclosed herein is a method of producing multi-walled nanoparticles, as well as methods of using thereof. Multi-walled particles prepared using the method disclosed herein are useful for controlling the release of active agents.
Abstract:
The invention involves methods and products related to the micronization of hydrophobic drugs. A method of micronizing hydrophobic drugs using a set of solutions including an aqueous solution is provided. The invention also relates to products of micronized hydrophobic drugs and related methods of use.
Abstract:
Methods to produce polymeric microparticles containing nanoparticles such, as pigments, dyes and other chromophores for cosmetic use, plastic surgery therapeutic use, and tattoos have been developed. The microparticles contain within the polymer a very uniform dispersion of dye particles. The methods by which the particles are made ensure a homogeneous mixture and high loading. The microparticles are made using air, one of a number of known methods such as phase inversion, solvent evaporation, and melt processing. The improvement is in the use of a method that makes, a stable dispersion of the nanoparticles in the liquid polymer before formation of the microparticles. This is achieved through selection of appropriate solvent, optionally including surfactant, and then subjecting the dispersion to mechanical processing that stabilizes the dispersion within the polymer solvent, so that the nanoparticles remain suspended for at least thirty minutes, in some cases two hours to 48 hours, sometimes up to three months. The mechanical processing can be sonication and/or production of shear forces, for examples, resulting from use of an open blade or rotor stator mixer or milling with a concentric shaft, at a speed such as between 5000 and 25,000 RPM.
Abstract:
The invention relates to the use of one or more growth factors in a drug delivery system, optionally with an external mesh housing, to recruit and optionally harvest progenitor cells. These cells include those that normally reside in the bone marrow.