Abstract:
Example implementations relate to simulating an environment. For example, a system for environment simulation may include a simulation engine to build an environment simulation to mimic portions of a real environment relevant to a detected anomaly trend, an acceleration engine to simulate, within the environment simulation, a scenario associated with the detected anomaly at a rate faster than the scenario occurs in the real environment, a abnormal behavior engine to detect a abnormal behavior associated with the scenario, and an adaptation engine to modify a device within the real environment to be adaptive to the scenario, based on the detected abnormal behavior.
Abstract:
An example device in accordance with an aspect of the present disclosure includes an interleaved connector including a plurality of layers of conducting material interspersed with insulating material. A plurality of electrodes are to identify a change in capacitance of the interleaved connector to indicate a penetration of the device.
Abstract:
In some examples, with respect to asymmetric-man-in-the-middle capture based application sharing protocol traffic recordation, a dynamic-link library that alters application programming interface calls with respect to communication between an application sharing protocol client and an application sharing protocol server may be injected into the application sharing protocol client. Based on the injected dynamic-link library, data from the communication between the application sharing protocol client and the application sharing protocol server may be ascertained. Further, based on the ascertained data, a test script may be generated to test operation of an application associated with the communication between the application sharing protocol client and the application sharing protocol server.
Abstract:
A system receives a source database language statement according to a first dialect, determines a pattern of the source database language statement, the pattern comprising an abstract representation of the source database language statement, and checks whether the determined pattern is present in a cache of translations between patterns according to the first dialect and corresponding patterns according to a second dialect different from the first dialect. In response to the determined pattern being present in the cache of translations, the system converts, using a corresponding translation in the cache of translations, the source database language statement according to the first dialect to a respective target database language statement according to the second dialect.
Abstract:
In some examples, a system receives a user interface (UI) context of a UI, the UI context identifying a relationship between UI elements of the UI, and translates, based on the identified relationship between the UI elements in the UI context, text in the UI from a first language to a second language.
Abstract:
Examples herein disclose via use of a physical processor, detecting a specific application programming interface (API) call to interact with an application running on a production server. Based on the detection of the specific API call, the examples assist, using the physical processor, a scanning session based on the specific API call. Using the physical processor, the examples identify a modification to the application based on the scanning session.
Abstract:
In some examples, a first difference may be determined across respective first and second workflow elements in a first hierarchical level of respective first and second IT workflow data. A second difference may be determined across respective third and fourth workflow elements in a second hierarchical level of the respective first and second IT workflow data. A display representing the first and second differences may be generated.
Abstract:
Examples disclosed herein relate to source entities of security indicators. Some examples disclosed herein enable identifying, in a security information sharing platform, a security indicator that is originated from a source entity where the security indicator comprises an observable. Some examples further enable determining a reliability level of the source entity based on at least one of: security events, sightings of the observable, a first set of user feedback information that is submitted for the security indicator by users of the security information sharing platform, or a second set of user feedback information that is collected from external resources that are external to the security information sharing platform.
Abstract:
Examples disclosed herein relate to strength of associations among data records in a security information sharing platform. Some examples may enable creating, in the security information sharing platform, an association between a security indicator comprising an observable, and a data record. Some examples may further enable determining strength of the association between the security indicator and the data record based on at least one of: a likelihood of change in the association; a creator of the association; an aging rate of the association; or a quality of evidence that supports the association.
Abstract:
A log event cluster analytics management method may involve storing a first portion of an entire cluster dictionary in a transient memory, storing at least a second portion of the entire cluster dictionary in a persistent database and comparing a new log event message to the first portion of the overall cluster dictionary. In response to not assigning the new log event message to any cluster in the first portion of the entire cluster dictionary in the transient memory, selecting a subset of clusters of the at least second portion of the cluster dictionary in the persistent database, comparing the new log event message to a cluster of the selected subset of clusters and assigning the new log event message to the cluster of the selected subset of clusters based upon the comparison.