Abstract:
A method for producing benzoic acid or a methylbenzoic acid isomer is disclosed which comprises forming a dispersion comprising oxygen-containing gas bubbles dispersed in either toluene or an xylene isomer, wherein the bubbles have a mean diameter less than 1 micron. The dispersion is then subjected to reaction conditions comprising a pressure of less than about 1013 kPa and a temperature of less than about 160° C., whereby at least a portion of the toluene or xylene isomer is partially oxidized to form benzoic acid or the corresponding methylbenzoic acid isomer, respectively. In some embodiments, the methylbenzoic acid isomer is an intermediate compound, and the method further includes subjecting any unreacted xylene isomer and the intermediate compound to further oxidization, to form 1,2-benzenedicarboxylic acid, 1,3-benzenedicarboxylic acid, or 1,4-benzenedicarboxylic acid. A system of apparatus for performing the method is also disclosed.
Abstract:
A system and method for a high shear mechanical device incorporated into a process for the production of acetic anhydride as a reactor device is shown to be capable of decreasing mass transfer limitations, thereby enhancing the process. A system for the production of acetic anhydride including the mixing of catalyst and acetic acid via a high shear device.
Abstract:
Use of a high shear mechanical device incorporated into a process for the production of sulfolene as a reactor device is capable of decreasing mass transfer limitations, thereby enhancing the sulfolene production process. A system for the production of sulfolene from butadiene and sulfur dioxide, the system comprising a reactor and an external high shear mixer the outlet of which is fluidly connected to the inlet of the reactor; the high shear mixer capable of providing a dispersion of sulfur dioxide gas bubbles within a liquid, the bubbles having an average bubble diameter of less than about 100μm.
Abstract:
A method for removing hydrogen sulfide from a sour gas stream comprising hydrogen sulfide by oxidizing hydrogen sulfide in a converter by contacting the sour gas stream with an aqueous catalytic solution, thereby producing a desulfurized gas stream and a liquid stream comprising reduced catalyst and elemental sulfur, introducing an oxidant and the liquid stream comprising reduced catalyst and elemental sulfur into a high shear device and producing a dispersion wherein the mean bubble diameter of the oxidant gas in the dispersion is less than about 5 microns, introducing the dispersion into a vessel from which a sulfur-containing slurry is removed and a regenerated catalyst stream is removed, wherein the sulfur slurry comprises elemental sulfur and aqueous liquid, and recycling at least a portion of the regenerated catalyst stream to the converter. A system of apparatus for carrying out the method is also provided.
Abstract:
A method of removing sulfur from sour oil by subjecting sour oil having a first sulfur content to high shear in the presence of at least one desulfurizing agent to produce a high shear treated stream, wherein the at least one desulfurizing agent is selected from the group consisting of bases and inorganic salts, and separating both a sulfur-rich product and a sweetened oil product from the high shear-treated stream, wherein the sulfur-rich product comprises elemental sulfur and wherein the sweetened oil product has a second sulfur content that is less than the first sulfur content. A system for reducing the sulfur content of sour oil via at least one high shear device comprising at least one rotor and at least one complementarily-shaped stator, and at least one separation device configured to separate a sulfur-rich product and sweetened oil from the high shear-treated stream.
Abstract:
A method for culturing algae comprising, forming an emulsion comprising a gaseous stream and a media utilizing a high shear device, wherein the emulsion comprises gas bubbles, and wherein the high shear device comprises at least one toothed rotor and at least one stator; introducing the emulsion into a bioreactor; and introducing an algae into the bioreactor for growing the algae culture. Additionally, a method for producing liquids from an algae culture, the method comprising forming an emulsion comprising a buffer and algal components, wherein the emulsion comprises algal component globules; separating algal hydrocarbons; and processing algal hydrocarbons to form liquid hydrocarbons. Additionally, a system for producing liquids from an algae culture comprising at least one high shear device.
Abstract:
A method of producing value-added product from refinery-related gas, the method comprising: providing a refinery-related gas comprising at least one selected from C1-C8 compounds; intimately mixing the refinery-related gas with a liquid carrier in a high shear device to form a dispersion of gas in the liquid carrier, wherein the gas bubbles in the dispersion have a mean diameter of less than or equal to about 5 μm; and extracting value-added product comprising at least one component selected from higher hydrocarbons, olefins and alcohols. A system for producing value-added product from refinery-related gas comprising: at least one high shear device comprising at least one rotor and at least one complementarily-shaped stator; apparatus for the production of a refinery-related gas comprising one or more of C1-C8 compounds; and a pump configured for delivering a liquid stream comprising the liquid carrier to the high shear device.
Abstract:
Herein disclosed is an apparatus, which comprises (1) a first cylindrical, porous, catalytic rotor symmetrically positioned about an axis of rotation and surrounding a first interior space; wherein the first porous catalytic rotor comprises a first catalyst; (2) an outer casing, wherein the outer casing and the rotor are separated by an annular space; (3) a motor configured for rotating the rotor about the axis of rotation; (4) a feed inlet line; and (5) a first outlet line, wherein the first outlet line is fluidly connected with the annular space. Herein disclosed is also a method comprising: (1) passing a feed gas comprising at least one gaseous reactant through a porous, catalytic rotor, wherein the porous, catalytic rotor is permeable to the at least one gaseous reactant and is made from or contains a catalyst effective for catalyzing a first reaction; and (2) extracting a first desired product.