Abstract:
A beam shaping device (1; 50; 60) comprising first (3) and second (4) substrates, a liquid crystal layer (2) sandwiched between the substrates, and a first electrode layer (5; 51) provided on a side of the first substrate (3) facing the liquid crystal layer (2). The beam shaping device is controllable between beam shaping states, each permitting passage of light through the beam shaping device, and further comprises an insulating layer (7) covering the first electrode layer (5; 51) and a second electrode layer (6; 53) provided on top of the insulating layer. The second electrode layer (6; 53) comprises a conductor pattern exposing a portion of the insulating layer (7). The beam shaping device is configured in such a way that application of a voltage (V) between the first (5; 51) and second (6; 53) electrode layers causes liquid crystal molecules comprised in a portion of the liquid crystal layer (2) corresponding to the exposed portion of the insulating layer to tilt in a plane perpendicular to the liquid crystal layer, resulting in a local refractive index gradient, thereby enabling shaping of a beam (8) of light passing through the beam shaping device.
Abstract:
A beam shaping device (1; 31) comprising first (3; 33) and second (4; 37) optically transparent substrates, a liquid crystal layer (2; 36) sandwiched there between, and first (5; 34) and second (6; 35) electrodes arranged on a side of the liquid crystal layer (2; 36) facing the first substrate (3; 34). The beam shaping device (1; 31) is controllable between beam-shaping states, each permitting passage of light through the beam-shaping device in a direction perpendicular thereto. The beam shaping device (1; 31) is configured in such a way that application of a voltage (V) across the first (5; 34) and second (6; 35) electrodes results in an electric field having a portion essentially parallel to the liquid crystal layer (2; 36) in a segment thereof between neighboring portions of the electrodes (5, 6; 34; 35) and extending substantially from the first substrate (3; 34) to the second (4; 35) substrate. In this way a relatively high refractive index gradient can be obtained across short distances, which enables a very efficient beam shaping. The electric field can be achieved by utilizing electrodes provided on one side of the liquid crystal layer, in a so-called in-plane configuration. The device can be used in an autostereoscopic display device, for switching between 2D and 3D modes.
Abstract:
The invention relates to an apparatus for measuring light and a luminaire comprising the apparatus. The apparatus measures light from a first light emitting device located in a first position and comprises a light transmissive device having at least three surfaces: a first surface, a second surface and a third surface; and a photo sensor. The first surface is arranged for incoming light from the first position, the second surface is arranged for reflecting incident light within the light transmissive device and the third surface is arranged such that outgoing light incides onto the photo sensor.
Abstract:
An illumination device for providing a polarized light beam comprising a light source (101) having a light emitting surface arranged to emit light (107) in a plane (X-Y), a first polarizing reflector (103) arranged to enclose a light emitting surface of said light source (101) in said plane, and adapted to receive said light, reflect light (109) of a first elliptical polarization in a target direction (Z) and transmit light (111) of an opposite, second elliptical polarization; and a second reflector (105) arranged to enclose said first polarizing reflector (103) in said plane (X-Y), and adapted to receive transmitted light (111) from the first polarizing reflector (103) and reflect elliptical polarized light (113) in the target direction (Z). By arranging the two reflectors enclosing a side-emitting light source, a higher efficiency can be obtained with a preserved beam shape.
Abstract:
The present invention relates to a lamp module (10) comprising at least one light emitting diode (LED) chip (12) for emitting light, means (13, 15, 16, 17) for extracting and shaping the light emitted from the chip(s), and a base (21) for allowing the lamp module to be fitted and connected to a lighting device. The lamp module is characterized by at least one electrically switchable cell (22) adapted to receive light emitted from the LED chip(s), which cell in a first state transmits incoming light without substantially altering the direction of the light and in a second state alters the direction of the light when the light passes the cell(s). This allows for electrically controlled adjustable beam shaping. The present invention also relates to a lighting device (30) comprising such a lamp module.
Abstract:
A device (201) for controlling shape and direction of light, comprises a first transparent planar substrate (203) and a second transparent planar substrate (205), the substrates being configured for arrangement essentially perpendicular to incident light beams (211), a liquid crystal layer (209) arranged between the first and second substrate, a first transparent electrode pattern (207) arranged on the first substrate and a second transparent electrode pattern (217) arranged on the second substrate, and control means configured to adjust an electric potential difference between the first and second electrode patterns, thereby configured to adjust a refractive index of the liquid crystal layer.
Abstract:
The invention relates to a transflective LCD incorporating a partial mirror (224) as the transflector. In the transmissive display mode, light from a backlight system (240) passes apertures (226) in the transflector (224). According to the invention, recycling of light to the backlight system (240) is improved by substantially only polarizing light that passes an aperture. This is achieved by means of a patterned polarizer (222) extending over the apertures in the partial mirror.
Abstract:
A method of manufacturing an optical integrator panel is provided. The method comprises the steps of: suspending a plurality of elongate particles in a liquid; applying an electric or magnetic field to the suspension to orientate the particles with parallel longitudinal axes; and solidifying the liquid to fix the orientation of the particles, thereby forming an optical integrator panel having a homogeneous distribution of elongate particles. An optical integrator panel is also provided. The optical integrator panel is adapted to reduce the angular dependence of contrast of a liquid crystal display. Specifically, the optical integrator panel is for placement in the path of reflected or transmitted light emitted by the liquid crystal display. The optical integrator panel comprises: a solid transparent panel; and a plurality of elongate particles homogeneously distributed in the panel, wherein the plurality of elongate particles are orientated with parallel longitudinal axes.
Abstract:
A collimator panel comprises: a solid panel having a first face for receiving uncollimated radiation and a second opposite face for providing collimated radiation; and a plurality of elongate particles disposed in the panel and orientated to provide the collimating function. A method of manufacturing a collimator panel comprises the steps of: suspending a plurality of elongate particles in a liquid; applying an electric or magnetic field to the suspension to orientate the particles; and solidifying the liquid to fix the orientation of the particles, thereby forming a collimator panel. A method of manufacturing the elongate particles is also provided.
Abstract:
A collimator panel comprises: a solid panel having a first face for receiving uncollimated radiation and a second opposite face for providing collimated radiation; and a plurality of elongate particles disposed in the panel and orientated to provide the collimating function. A method of manufacturing a collimator panel comprises the steps of: suspending a plurality of elongate particles in a liquid; applying an electric or magnetic field to the suspension to orientate the particles; and solidifying the liquid to fix the orientation of the particles, thereby forming a collimator panel. A method of manufacturing the elongate particles is also provided.