Abstract:
An apparatus for performing spatial and spectral analysis comprising a bundle of a plurality of chalcogenide glass fiber, an optical system for transmitting light received from the bundle, and a detector for receiving the light signal from the optical system for providing spatial and spectral analysis of the bundle image; maximum diameter of the fibers is about the size of the pixels on the detector.
Abstract:
A glass-ceramic article or composition which has better thermal and physical properties than the competing materials of zinc sulfide, spinel, or magnesium fluoride comprising 2-30 mole percent yttrium oxide and/or rare earth oxide, 25-80 mole percent germanium oxide, and 5-30 mole percent gallium oxide, based on the total moles of yttrium oxide and/or the rare earth oxide, germanium oxide, and gallium oxide; which article is over 80% by volume crystalline.
Abstract:
A sulfide glass with improved mechanical and optical properties such as ended transmission in the infrared region of radiation having wavelengths of up to about 15 microns; Tg in the region of 410.degree.-550.degree. C.; and thermal stability of 100.degree.-300.degree. C. based on the difference between T.sub.g and T.sub.x, comprising, on mol basis, 20-90% germanium sulfide, 0-60% gallium sulfide, and 5-60% of at least one modifier in sulfide form. A process for improving mechanical and optical properties of a sulfide glass based on gallium sulfide and/or germanium sulfide comprises the steps of mixing glass components, including a modifier in elemental or sulfide form; melting the glass components to form a molten mixture; cooling the molten glass mixture to a solid state; annealing the solid glass; and cooling the annealed glass to about room temperature. The glass components can be in elemental form or in the form of sulfides, and if in elemental form, then sufficient amount of sulfur is added to form sulfides of the glass components.
Abstract:
A germanate glass ceramic article which has better thermal and physical perties than the competing materials of zinc sulfide, spinel, and sapphire is made by mixing germanate ceramic glass components; melting the components to form a molten mass; cooling the molten mass to form a solid glass article; nucleating the solid article by heating it in the range of about 630.degree.-790.degree. C. for about 1-16 hours to develop nuclei in the article; and crystallizing the nucleated article by heating it, after nucleation, in the range of about 1/2 minute to about 8 hours to grow the nuclei to crystallites having an average diameter of less then about 1000 nanometer (nm); and cooling to form the glass ceramic.
Abstract:
This invention pertains to optical waveguides which includes waveguides ofll shapes and sizes, preforms, and optical fibers made from the preforms, and to a method for making waveguides devoid of a physical interface. The method includes preparation of a waveguide from a halide-containing glass, heating the waveguide to a temperature below crystallization temperature of the glass so that it is still solid, providing a gaseous reactive medium containing halide ions of higher electronegativity than halide ions in the waveguide, exposing the waveguide to said reactive medium for a sufficient duration for the halide ions of higher electronegativity in the reactive medium to replace at least a portion of the halide ions of lower electronegativity in the waveguide, and cooling the waveguide whereby a lower refractive index is formed on the side of the waveguide exposed to the reactive medium than the refractive index internally of the waveguide so that light can travel through the portion of the waveguide having the higher refractive index.
Abstract:
A process for producing long length fluoride glass preforms, by producing a fluoride glass rod of core glass, overcoating the core glass rod with fluoride cladding glass to form a core/clad unit, and overcoating the core/clad unit with an oxide glass overclad.
Abstract:
The present invention is directed to a method for making infrared transmitting graded index optical elements by selecting at least two different infrared-transmitting materials, each with a different refractive index, having similar thermo-viscous behavior; assembling the infrared-transmitting materials into a stack comprising one or more layers of each infrared-transmitting material resulting in the stack having a graded index profile; and forming the stack into a desired shape. Also disclosed is the related optical element made by this method.
Abstract:
Fiber optic amplification in a spectrum of infrared electromagnetic radiation is achieved by creating a chalcogenide photonic crystal fiber (PCF) structure having a radially varying pitch. A chalcogenide PCF system can be tuned during fabrication of the chalcogenide PCF structure, by controlling, the size of the core, the size of the cladding, and the hole size to pitch ratio of the chalcogenide PCF structure and tuned during exercising of the chalcogenide PCF system with pump laser and signal waves, by changing the wavelength of either the pump laser wave or the signal wave, maximization of nonlinear conversion of the chalcogenide PCF, efficient parametric conversion with low peak power pulses of continuous wave laser sources, and minimization of power penalties and minimization of the need for amplification and regeneration of pulse transmissions over the length of the fiber, based on a dispersion factor.
Abstract:
A comparative discrimination spectral detection (CDSD) system for the identification of chemicals with overlapping spectral signatures, including: a radiation source for delivering radiation to a sample; a radiation collector for collecting radiation from the sample; a plurality of beam splitters for splitting the radiation collected from the sample into a plurality of radiation beams; a plurality of low-resolution optical filters for filtering the plurality of radiation beams; a plurality of radiation detectors for detecting the plurality filtered radiation beams; and a processor for: receiving a set of reference spectra related to a set of target chemicals and generating a set of base vectors for the set of target chemicals from the set of reference spectra, wherein the set of base vectors define a geometrical shape in a configuration space; receiving a set of filtered test spectra from the plurality of radiation detectors and generating a set of test vectors in the configuration space from the set of filtered test spectra; assessing a geometrical relationship of the set of test vectors and the geometrical shape defined by the set of base vectors in the configuration space; and based on the assessed geometrical relationship, establishing a probability that a given test spectrum or spectra matches a given reference spectrum or spectra.
Abstract:
Method of Making particles including a YAG core and a coating of sintering aid deposited thereon. The particles and agglomerates thereof maybe formed as a powder. The coated YAG-containing particles are well-suited to production of polycrystalline YAG-containing ceramics. The coated YAG-containing particles may be fabricated using a novel fabrication method which avoids the need for formation of a homogeneous powder mixture of YAG and sintering aid. The mixture may be sprayed into a drying column and dried to produce coated particles. Alternatively, the YAG particles and sintering aid or sintering aid precursor solution may be separately introduced to the drying column and dried to form coated YAG-containing particles.