Infrared fiber imager
    31.
    发明授权
    Infrared fiber imager 有权
    红外线成像仪

    公开(公告)号:US06175678B1

    公开(公告)日:2001-01-16

    申请号:US09310376

    申请日:1999-05-12

    CPC classification number: G02B6/06 G02B6/02

    Abstract: An apparatus for performing spatial and spectral analysis comprising a bundle of a plurality of chalcogenide glass fiber, an optical system for transmitting light received from the bundle, and a detector for receiving the light signal from the optical system for providing spatial and spectral analysis of the bundle image; maximum diameter of the fibers is about the size of the pixels on the detector.

    Abstract translation: 一种用于执行空间和光谱分析的装置,包括多束硫属化物玻璃光纤束,用于发射从光束接收的光的光学系统,以及用于接收来自光学系统的光信号的检测器,用于提供对该光束的空间和光谱分析 束图像 纤维的最大直径约为检测器上像素的尺寸。

    Alkaline earth modified germanium sulfide glass
    33.
    发明授权
    Alkaline earth modified germanium sulfide glass 失效
    碱土改性硫化锗玻璃

    公开(公告)号:US5599751A

    公开(公告)日:1997-02-04

    申请号:US396292

    申请日:1995-02-28

    CPC classification number: C03C4/10 C03C13/043 C03C3/321 Y10S501/904

    Abstract: A sulfide glass with improved mechanical and optical properties such as ended transmission in the infrared region of radiation having wavelengths of up to about 15 microns; Tg in the region of 410.degree.-550.degree. C.; and thermal stability of 100.degree.-300.degree. C. based on the difference between T.sub.g and T.sub.x, comprising, on mol basis, 20-90% germanium sulfide, 0-60% gallium sulfide, and 5-60% of at least one modifier in sulfide form. A process for improving mechanical and optical properties of a sulfide glass based on gallium sulfide and/or germanium sulfide comprises the steps of mixing glass components, including a modifier in elemental or sulfide form; melting the glass components to form a molten mixture; cooling the molten glass mixture to a solid state; annealing the solid glass; and cooling the annealed glass to about room temperature. The glass components can be in elemental form or in the form of sulfides, and if in elemental form, then sufficient amount of sulfur is added to form sulfides of the glass components.

    Abstract translation: 具有改进的机械和光学特性的硫化物玻璃,例如在具有高达约15微米的波长的辐射的红外区域中的扩展传播; 在410°-550℃的范围内的Tg。 和基于Tg和Tx之间的差异的100-300℃的热稳定性,基于摩尔数,包括20-90%的硫化锗,0-60%的硫化镓和5-60%的至少一种改性剂 呈硫化物形式。 一种改善硫化镓和/或硫化锗硫化物玻璃的机械和光学性质的方法包括以下步骤:将元素或硫化物形式的改性剂混合在一起; 熔化玻璃组分以形成熔融混合物; 将熔融玻璃混合物冷却至固态; 退火固体玻璃; 并将退火玻璃冷却至约室温。 玻璃组分可以是元素形式或硫化物形式,如果是元素形式,则加入足够量的硫以形成玻璃组分的硫化物。

    Germanate glass ceramic
    34.
    发明授权
    Germanate glass ceramic 失效
    德国玻璃陶瓷

    公开(公告)号:US5486495A

    公开(公告)日:1996-01-23

    申请号:US363074

    申请日:1994-12-23

    CPC classification number: C03C10/00 C03C3/253

    Abstract: A germanate glass ceramic article which has better thermal and physical perties than the competing materials of zinc sulfide, spinel, and sapphire is made by mixing germanate ceramic glass components; melting the components to form a molten mass; cooling the molten mass to form a solid glass article; nucleating the solid article by heating it in the range of about 630.degree.-790.degree. C. for about 1-16 hours to develop nuclei in the article; and crystallizing the nucleated article by heating it, after nucleation, in the range of about 1/2 minute to about 8 hours to grow the nuclei to crystallites having an average diameter of less then about 1000 nanometer (nm); and cooling to form the glass ceramic.

    Abstract translation: 通过混合锗酸盐陶瓷玻璃组分制备具有比硫化锌,尖晶石和蓝宝石的竞争材料更好的热物理性能的锗酸盐玻璃陶瓷制品; 熔化组分以形成熔融体; 冷却熔融物料以形成固体玻璃制品; 通过在约630-990℃的范围内加热固化制品约1-16小时来制成固体制品,以在制品中形成核; 通过加热成核后,在约1/2分钟至约8小时的范围内使核成核物质结晶,使核生长成平均直径小于约1000纳米(nm)的微晶; 并冷却以形成玻璃陶瓷。

    Method of forming waveguides with ion exchange of halogen ions
    35.
    发明授权
    Method of forming waveguides with ion exchange of halogen ions 失效
    用卤离子离子交换形成波导的方法

    公开(公告)号:US5294240A

    公开(公告)日:1994-03-15

    申请号:US937765

    申请日:1992-09-01

    CPC classification number: C03C21/007 Y10S65/15 Y10S65/16

    Abstract: This invention pertains to optical waveguides which includes waveguides ofll shapes and sizes, preforms, and optical fibers made from the preforms, and to a method for making waveguides devoid of a physical interface. The method includes preparation of a waveguide from a halide-containing glass, heating the waveguide to a temperature below crystallization temperature of the glass so that it is still solid, providing a gaseous reactive medium containing halide ions of higher electronegativity than halide ions in the waveguide, exposing the waveguide to said reactive medium for a sufficient duration for the halide ions of higher electronegativity in the reactive medium to replace at least a portion of the halide ions of lower electronegativity in the waveguide, and cooling the waveguide whereby a lower refractive index is formed on the side of the waveguide exposed to the reactive medium than the refractive index internally of the waveguide so that light can travel through the portion of the waveguide having the higher refractive index.

    Abstract translation: 本发明涉及包括所有形状和尺寸的波导的光波导,预成型件和由预型件制成的光纤,以及用于制造没有物理接口的波导的方法。 该方法包括从含卤化物的玻璃制备波导,将波导加热至低于玻璃结晶温度的温度,使其仍然是固体,提供含有比波长中的卤离子更高的电负性的卤离子的气态反应介质 使波导到所述反应介质持续足够的持续时间,以使反应介质中具有较高电负性的卤离子替代至少一部分波导中较低电负性的卤离子,并冷却波导,由此较低折射率为 形成在暴露于反应性介质的波导的侧面,而不是波导内部的折射率,使得光可以穿过具有较高折射率的波导的部分。

    Systems and methods of achieving high brightness infrared fiber parametric amplifiers and light sources
    38.
    发明授权
    Systems and methods of achieving high brightness infrared fiber parametric amplifiers and light sources 有权
    实现高亮度红外光纤参数放大器和光源的系统和方法

    公开(公告)号:US09577401B2

    公开(公告)日:2017-02-21

    申请号:US14814848

    申请日:2015-07-31

    Abstract: Fiber optic amplification in a spectrum of infrared electromagnetic radiation is achieved by creating a chalcogenide photonic crystal fiber (PCF) structure having a radially varying pitch. A chalcogenide PCF system can be tuned during fabrication of the chalcogenide PCF structure, by controlling, the size of the core, the size of the cladding, and the hole size to pitch ratio of the chalcogenide PCF structure and tuned during exercising of the chalcogenide PCF system with pump laser and signal waves, by changing the wavelength of either the pump laser wave or the signal wave, maximization of nonlinear conversion of the chalcogenide PCF, efficient parametric conversion with low peak power pulses of continuous wave laser sources, and minimization of power penalties and minimization of the need for amplification and regeneration of pulse transmissions over the length of the fiber, based on a dispersion factor.

    Abstract translation: 通过产生具有径向变化的间距的硫属元素光子晶体光纤(PCF)结构来实现红外电磁辐射光谱中的光纤放大。 在硫属化物PCF结构的制造期间,可以通过控制核心尺寸,包层尺寸以及硫属化物PCF结构的孔径与间距比并在硫属化物PCF的运动期间进行调节来调整硫属化物PCF系统 系统采用泵浦激光和信号波,通过改变泵浦激光波或信号波的波长,硫属化物PCF的非线性转换最大化,连续波激光源的低峰值功率脉冲的有效参数转换和功率的最小化 基于分散因子,在纤维的长度上对脉冲传输的放大和再生的需要的惩罚和最小化。

    COMPARATIVE DISCRIMINATION SPECTRAL DETECTION SYSTEM AND METHOD FOR THE IDENTIFICATION OF CHEMICALS WITH OVERLAPPING SPECTRAL SIGNATURES
    39.
    发明申请
    COMPARATIVE DISCRIMINATION SPECTRAL DETECTION SYSTEM AND METHOD FOR THE IDENTIFICATION OF CHEMICALS WITH OVERLAPPING SPECTRAL SIGNATURES 有权
    比较光谱检测系统和化学品鉴定方法与重叠光谱信号的比较

    公开(公告)号:US20170045442A1

    公开(公告)日:2017-02-16

    申请号:US14966807

    申请日:2015-12-11

    CPC classification number: G01N21/3504 G01N21/35 G01N2201/1293

    Abstract: A comparative discrimination spectral detection (CDSD) system for the identification of chemicals with overlapping spectral signatures, including: a radiation source for delivering radiation to a sample; a radiation collector for collecting radiation from the sample; a plurality of beam splitters for splitting the radiation collected from the sample into a plurality of radiation beams; a plurality of low-resolution optical filters for filtering the plurality of radiation beams; a plurality of radiation detectors for detecting the plurality filtered radiation beams; and a processor for: receiving a set of reference spectra related to a set of target chemicals and generating a set of base vectors for the set of target chemicals from the set of reference spectra, wherein the set of base vectors define a geometrical shape in a configuration space; receiving a set of filtered test spectra from the plurality of radiation detectors and generating a set of test vectors in the configuration space from the set of filtered test spectra; assessing a geometrical relationship of the set of test vectors and the geometrical shape defined by the set of base vectors in the configuration space; and based on the assessed geometrical relationship, establishing a probability that a given test spectrum or spectra matches a given reference spectrum or spectra.

    Abstract translation: 用于识别具有重叠光谱特征的化学品的比较鉴别光谱检测(CDSD)系统,包括:用于将辐射传送到样品的辐射源; 用于收集来自样品的辐射的辐射收集器; 多个分束器,用于将从样品收集的辐射分成多个辐射束; 多个用于对多个辐射束进行滤波的低分辨率滤光器; 多个辐射检测器,用于检测多个滤波的辐射束; 以及处理器,用于:接收与一组目标化学品相关的一组参考光谱,并从所述参考光谱集合生成用于所述一组目标化学物质的一组基本矢量,其中所述一组基本矢量在 配置空间; 从所述多个辐射检测器接收一组滤波的测试光谱,并从所述滤波的测试光谱集合中产生所述配置空间中的一组测试向量; 评估所述一组测试向量的几何关系和由所述配置空间中的所述一组基向量定义的几何形状; 并基于评估的几何关系,建立给定测试光谱或光谱与给定参考光谱或光谱匹配的概率。

Patent Agency Ranking