Abstract:
A method for applying a liquid composition to a rail surface is provided. This method involves supplying a liquid composition in one or more reservoirs on a rail car (revenue generating car), and applying the liquid composition from the one or more reservoirs to the rail surface. A liquid composition application system is also provided. The liquid composition application system includes a reservoir(s) for holding a liquid composition mounted on a rail car. A pipe is connected to the reservoir(s), and a pump, for moving the liquid composition from the reservoir(s) to a dispensing nozzle(s), is provided. A controller processes topological information, data from the liquid composition application system, or both. The application of the liquid composition may be monitored and controlled from a remote site separate from the rail car.
Abstract:
A solid composition stick applicator is provided. The applicator comprises an applicator body having a first and second end, the second end having an opening through which a solid composition stick is dispensed. Within the applicator is housed a helical tension spring having a first spring end and a second spring end, the first spring end, second spring end, or both the first and second spring end held at a fixed position with respect to the applicator body. The helical tension spring is wound around a guide system that is housed within the applicator body. A pushing assembly is attached to the helical tension spring and the pushing assembly is movable from a first position at or near the first end of the applicator body, to a second position at or near the second end of the applicator body. Tension within the helical tension spring is greater in the first position than in the second position thereby urging the pushing assembly towards the -second end of the applicator body. The use of a helical tension spring within the applicator greatly increases the life of the applicator under field conditions.
Abstract:
The present invention provides a modified solid stick composition comprising a thermosetting plasticizer, a resin, a lubricant, a friction modifier, or a combination thereof. The solid stick compositions may be used for application between two metal surfaces in sliding and rolling-sliding contact such as steel wheel-rail systems including mass transit and freight systems. A method of reducing energy consumption, or controlling friction between a metal surface and a second metal surface by applying the solid stick composition to one or more than one of the metal surfaces, is also provided.
Abstract:
The present invention provides a water based friction control composition comprising a binder a rheological control agent, and optionally a lubricant. The liquid friction control composition may also comprise other components such as a wetting agent, a consistency modifier, and a preservative. The liquid friction control compositions may be used to modify the interfacial friction characteristics in sliding and rolling-sliding contact such as steel wheel-rail systems including mass transit and freight systems. A method of reducing lateral force, reducing energy consumption, or controlling friction between a metal surface and a second metal surface by applying the composition to metal surface, for example a top of rail or wheel, is also provided. The composition may be sprayed onto the rail surface.
Abstract:
Una barra sólida interconectable (100) que comprende un bloque (110) con cuatro caras laterales, un primer extremo y un segundo extremo opuesto, y un adaptador (120) unido al primer extremo del bloque (110), el adaptador (120) teniendo cuatro caras laterales conectadas por bordes laterales substancialmente curvados, en donde el segundo extremo del bloque (110) contiene una cavidad (130) con paredes laterales substancialmente curvadas, dimensionadas para recibir ajustadamente al adaptador (120) de una barra sólida interconectable (100) correspondiente, caracterizada porque una longitud (nl) de una cara lateral del adaptador (120) y una longitud (l) de la cara lateral del bloque (110) en el mismo plano tiene una ratio nl/l de entre 0.6 y 0.75.
Abstract:
According to the invention there is provided a liquid friction control composition characterized as either having a high and positive friction characteristic or a low and neutral friction characteristic, comprising a retentivity agent. The liquid friction control composition may also comprise other components such as a solid lubricant, a wetting agent, a consistency modifier, and a preservative. The liquid friction control compositions may be used to modify the interfacial friction characteristics in sliding and rolling-sliding contact such as steel wheel-rail systems including mass transit and freight systems.
Abstract:
According to the invention there is provided a liquid friction control composition for use in low temperature conditions, which comprises a rheological control agent, a consistency modifier and a freezing point depressant. The liquid friction control composition may also comprise other components such as a retentivity agent, an antioxidant, a friction modifier, a lubricant, a wetti ng agent, and a preservative.
Abstract:
The present invention relates to novel lubricant and friction modifier compositions optionally comprising a solid lubricant and a banding agent in water medium suitable for lubricating steel-steel interfaces such as tractor-trailer couplings, rail-wheel systems and other heavy duty applications. The invention also relates to compositions described above which include friction modifiers with high or very high and positive coefficients of friction such that the coefficient of friction is considerably higher than the solid lubricant. The invention further relates to compositions comprising a binding agent and a friction modifier with a very high and positive coefficient of friction in a water medium.