Abstract:
A developing device includes a developing case, a filter, and a filter holder. The developing case stores developer inside to develop a latent image formed on a surface of an image bearer and has an opening portion that communicates between an inside and an outside of the developing device. The filter has a lower weight density per unit volume at a first side of the filter facing the inside of the developing device than a weight density per unit volume at a second side of the filter facing the outside of the developing device. The filter holder is detachably attached to the opening portion of the developing case with the filter held by the filter holder.
Abstract:
A developing apparatus includes an electrostatic latent image bearer, a developing sleeve, a case, and an air filter. The case accommodates a two-component developer and the developing sleeve. The air filter is attached to the case. The air filter has a thickness of 2 to 20 mm and has a density gradient with a pressure loss of 2 to 40 Pa at a wind speed of 10 cm/s. The air filter forms an airflow sucked into the case from a gap between the developing sleeve and the case and forms an airflow discharged from the case through the air filter. The two-component developer accommodated in the case contains a magnetic particle a surface of which is coated with a resin layer. The resin layer contains at least one type of chargeable particle.
Abstract:
An image forming apparatus includes an image bearer, a rotation shaft, a developing device, and a supply portion. The developing device includes a developing device main portion that rotates around the rotation shaft between a developing position and a retracted position and includes a developer, a developer bearer to face or be away from the image bearer depending on whether the developing device main portion is at the developing position or the retracted position, a replenishment portion having a replenishment port with an opposite surface formed by an arc drawn around the rotation shaft to replenish the developer, and a non-rotating portion. The supply portion has a supply port with an opposite surface formed by an arc drawn around the rotation shaft and facing the opposite surface of the replenishment port. The supply port communicates the replenishment port and supplies the developer to the developing device through the replenishment port.
Abstract:
A belt device includes a belt unit including a plurality of rotators and a belt looped around the plurality of rotators. The belt device further includes a frame including a plurality of support portions to support the belt unit, a biasing member to bias the belt unit supported by the frame in a predetermined direction, and an adjuster to adjust a position of at least one of the plurality of support portions.
Abstract:
An image forming apparatus includes an image bearer; a toner image forming device; an intermediate transferor; a primary transfer power source; a secondary transfer nip forming device; and a secondary transfer power source to output a secondary transfer bias. One of two peak values of the secondary transfer bias is a transfer peak value to provide a greater transfer-directional force to move toner from the intermediate transferor toward the recording medium in the secondary transfer nip. An absolute value of the transfer peak value is greater than an absolute value of the primary transfer bias.
Abstract:
An image forming apparatus includes a belt-shaped image bearer, a transferer, a guide, two rotators, and a support. The image bearer has an image bearing surface to bear an image thereon. The transferer forms a transfer section between the transferer and the image hearer, to transfer the image onto a recording medium. The guide is disposed upstream from the transfer section in a delivery direction of the recording medium, to guide the recording medium toward the transfer section. The two rotators are disposed upstream from the transfer section in a moving direction of the image bearer and in contact with a non-image bearing surface of the image bearer opposite to the image bearing surface, a first rotator being closer to the transfer section than a second rotator. The support supports the first rotator and the guide and adjusts a position of the first rotator and a position of the guide.
Abstract:
A cleaning device includes an upstream cleaner, an upstream cleaner, and a collection member. The upstream cleaner is configured to remove toner from a surface of a cleaning target. The downstream cleaner is disposed downstream from the upstream cleaner in a direction of movement of the surface of the cleaning target. The downstream cleaner is configured to remove toner from the surface of the cleaning target. The collection member is configured to collect toner from the downstream cleaner.
Abstract:
An endless rotatable belt device including an endless rotatable belt, a scale tape bonded on the belt, at least one optical sensor to detect a scale pattern, and auxiliary tape to cover at least one of the first end and the second end of the scale tape of the belt. The scale tape has a first end and a second end and includes at least one scale pattern. The auxiliary tape has a lower surface friction coefficient than the surface friction coefficient of the scale tape.
Abstract:
A cleaning device includes a cleaner, a casing, and an exit seal. The cleaner is configured to remove toner from a cleaning target. The casing accommodates the cleaner. The exit seal is attached to the casing and has a free end contacting the cleaning target at a position downward from the cleaner in a direction of movement of the cleaning target and an attached end attached to the casing. A space is disposed between a surface of the cleaning target and an opposite face of the exit seal opposite the cleaning target. The space includes an opening at a lateral end of the exit seal. The exit seal contacts the cleaning target from a trailing direction of the exit seal and seals the opening at at least an attached end side of the exit seal.
Abstract:
An image forming apparatus includes a plurality of image bearers, a transfer bias member, and a power source. When the transfer bias member transfers a color toner image onto a recording sheet, a second peak value of a peak-to-peak of a transfer bias, which is smaller than a first peak value of the peak-to-peak in an electrostatic force to move toner from the image bearers or an intermediate transfer body to the recording sheet, is zero or has a first polarity to generate the electrostatic force in a transfer direction to move toner from the image bearers or the intermediate transfer body to the recording sheet. When the transfer bias member transfers a monochromatic toner image including only black toner onto the recording sheet, the second peak value is zero or has a second polarity to generate an electrostatic force in an opposite direction to the transfer direction.