Abstract:
There is provided a biomolecule FET enhancing a sensitivity. The biomolecule FET includes a substrate, first and second impurity regions formed on both sides of the substrate, and doped with impurities of a polarity opposite to that of the substrate, a gate formed on the substrate and being in contact with the first and second impurity regions, and a probe biomolecule attached to the gate. A region of the gate adjacent to the first impurity region is wider than a region thereof adjacent to the second impurity region. A density of the probe biomolecule attached to the surface of the gate is increased, and when detecting a level of hybridization of the probe biomolecule and the target biomolecule, its sensitivity is improved.
Abstract:
An apparatus and method of providing blood glucose management information includes a determination unit that determines a similarity of a blood glucose change pattern of a user by comparing blood glucose information obtained from the user and stored blood glucose information, an extraction unit that extracts at least one piece of blood glucose information from the stored blood glucose information according to the similarity and generates extracted blood glucose information, and an interface unit which provides the blood glucose management information, which corresponds to the extracted blood glucose information, to the user.
Abstract:
Provided is a field effect transistor (FET) type biosensor including a source electrode, a gate, and a drain electrode. A ligand that can bind to a side of a nucleic acid is added to the surface of the gate. In a conventional FET type biosensor, it is difficult to detect a signal within the debye length because a target nucleic acid is directly fixed to the surface of a gate of the conventional FET. However, in the present invention, this problem can be overcome and the debye length can be increased by treating the surface of a gate of an FET sensor with a ligand that can bind to a side of a nucleic acid. The ligand can be adsorbed onto the surface of the gate. In this case, the nucleic acid is adsorbed parallel to the surface of the gate, not perpendicular to the surface of the gate, thus generating an effective depletion region. In addition, hybridization efficiency can be increased because a hybridized sample can be injected into an FET sensor at high ionic strength.
Abstract:
A method of displaying health information of a user, the method including: monitoring if a sharing request for a health information of a user is made by an external device, which provides a web page representing the health information of the user in the form of an image; downloading a captured image of the web page from the external device if the sharing request for the health information of the user is made; and displaying the downloaded captured image.
Abstract:
Provided is a method of detecting the presence of a target bio-molecule or a concentration of the bio-molecule using a field effect transistor. The method includes: contacting a first sample having a first target bio-molecule with a reference electrode of a field effect transistor; measuring a first electric signal change of the field effect transistor; contacting a second sample with a sensing surface of the same field effect transistor; measuring a second electric signal change of the field effect transistor; and comparing the first electric signal with the second electric signal.
Abstract:
An apparatus and method of providing blood glucose management information includes a determination unit that determines a similarity of a blood glucose change pattern of a user by comparing blood glucose information obtained from the user and stored blood glucose information, an extraction unit that extracts at least one piece of blood glucose information from the stored blood glucose information according to the similarity and generates extracted blood glucose information, and an interface unit which provides the blood glucose management information, which corresponds to the extracted blood glucose information, to the user.
Abstract:
Provided are a sensing switch and a sensing method using the same. The sensing switch includes: a substrate; a supporter on the substrate; a sensing plate that is connected to a side of the supporter and is in parallel with the substrate by a predetermined distance; a receptor binding region on an upper surface of an end portion of the sensing plate; an electric or magnetic field generation device that induces deflection of the sensing plate when a receptor bound to the receptor binding region is selectively bound to an electrically or magnetically active ligand; and a pair of switching electrodes that are separated by a predetermined distance and is connected when the sensing plate contacts the substrate due to the deflection of the sensing plate. A target material need not be labelled, a signal processing of a fluorescent or electrical detection signal using an analysis apparatus is not required, and a signal can be directly decoded by confirming whether a current flows through the switch.
Abstract:
Provided are a sensing switch and a sensing method using the same. The sensing switch includes: a substrate; a supporter on the substrate; a sensing plate that is connected to a side of the supporter and is in parallel with the substrate by a predetermined distance; a receptor binding region on an upper surface of an end portion of the sensing plate; an electric or magnetic field generation device that induces deflection of the sensing plate when a receptor bound to the receptor binding region is selectively bound to an electrically or magnetically active ligand; and a pair of switching electrodes that are separated by a predetermined distance and is connected when the sensing plate contacts the substrate due to the deflection of the sensing plate. A target material need not be labelled, a signal processing of a fluorescent or electrical detection signal using an analysis apparatus is not required, and a signal can be directly decoded by confirming whether a current flows through the switch.
Abstract:
A gas sensor includes a substrate having a plurality of through holes, a pair of electrodes disposed on the substrate, wherein the plurality of through holes are disposed between the pair of electrodes and a plurality of carbon nanotubes covering at least a portion of the plurality of through holes, wherein at least a portion of the plurality of carbon nanotubes is connected with the pair of electrodes.
Abstract:
A field effect transistor for detecting an analyte having a thiol group includes a substrate, a source region and a drain region formed apart from each other on the substrate, the source region and the drain region being doped such that a polarity of the source and drain region is opposite to a polarity of the substrate, a channel region disposed between the source region and the drain region, an insulating layer formed of an electrically insulating material and disposed on the channel region, a gold layer disposed on the insulating layer and a reference electrode disposed apart from the gold layer.