Abstract:
A collagen-based therapeutic delivery device includes an insoluble synthetic collagen-fibril matrix comprising a polymerization product of soluble oligomeric collagen or a polymerization product of a mixture of soluble oligomeric collagen with one or more type of non-oligomeric soluble collagen molecules, such as, for example, soluble telocollagen and/or soluble atelocollagen, and an active agent dispersed throughout the collagen-fibril matrix or within a portion of the collagen-fibril matrix. A pre-matrix composition includes an aqueous solution including soluble collagen-fibril building blocks and an active agent in the aqueous solution. The soluble collagen-fibril building blocks include soluble oligomeric collagen or a mixture of soluble oligomeric collagen with non-oligomeric soluble collagen molecules. The building blocks are operable to self-assemble into a macromolecular synthetic collagen-fibril matrix in the absence of an exogenous cross-linking agent. Methods of making and using the pre-matrix composition and the device are also provided.
Abstract:
Aspects of the present disclosure generally relate to compounds for targeting and healing bone fractures. Some of these compounds include a negatively charged oligopeptide comprising an acidic oligopeptide, a linker, which may be hydrolyzable or may be a substrate for the protease cathepsin K, and at least one molecule that promotes bone healing. In some compounds the molecule that promotes bone healing is an anabolic compound that inhibits GSK3β, in some compounds the molecule that promotes the healing of bone fracture is a pro-inflammatory agent such as PGE1. Other embodiments include methods of treating a bone fracture comprising administering a therapeutic amount of any one of the compounds disclosed herein.
Abstract:
A collagen-based therapeutic delivery device includes an insoluble synthetic collagen-fibril matrix comprising a polymerization product of soluble oligomeric collagen or a polymerization product of a mixture of soluble oligomeric collagen with one or more type of non-oligomeric soluble collagen molecules, such as, for example, soluble telocollagen and/or soluble atelocollagen, and an active agent dispersed throughout the collagen-fibril matrix or within a portion of the collagen-fibril matrix. A pre-matrix composition includes an aqueous solution including soluble collagen-fibril building blocks and an active agent in the aqueous solution. The soluble collagen-fibril building blocks include soluble oligomeric collagen or a mixture of soluble oligomeric collagen with non-oligomeric soluble collagen molecules. The building blocks are operable to self-assemble into a macromolecular synthetic collagen-fibril matrix in the absence of an exogenous cross-linking agent. Methods of making and using the pre-matrix composition and the device are also provided.
Abstract:
The disclosure relates to particle heaters for heating solid particles to store electrical energy as thermal energy. Thermal energy storage directly converts off-peak electricity into heat for thermal energy storage, which may be converted back to electricity, for example during peak-hour power generation. The particle heater is an integral part of an electro-thermal energy storage system, as it enables the conversion of electrical energy into thermal energy. As described herein, particle heater designs are described that provide efficient heating of solid particles in an efficient and compact configuration to achieve high energy density and low cost.
Abstract:
Cathode-electrolyte constructs, including such constructs in electrochemical systems, such as batteries are discussed. The cathode-electrolyte constructs can include a solid state electrolyte (SSE) and a cathode that includes particulate cathode material and the cathode conformally contacts the solid state electrolyte. Also discussed are methods of making cathode-electrolyte constructs and batteries.
Abstract:
The present disclosure generally relates to methods of treating hemolytic diseases such as sickle cell anemia using kinase inhibitors, for example, compounds that inhibit the spleen tyrosine kinase (SYK). In some embodiments a method is presented to prevent thrombosis in blood vessels of patients with a hemolytic disease comprising the step of: administrating to a patient having at least one hemolytic disease a therapeutically effective amount of at least one SYK inhibitor. In some embodiments the method includes repeatedly administering the SYK kinase inhibitor to a patient.
Abstract:
A hemostatic putty for treatment of a variety of wounds topographies, including but not limited to highly three dimensional wounds, for example gunshot wounds and impalements, is disclosed. The putty is comprised of a matrix polymer weakly crosslinked or not crosslinked such that a viscoelastic matrix is formed. The viscoelastic nature of the putty is tunable by the composition and enables the putty to conform to a variety of wound topographies. Likewise, a hemostatic polymer, for example chitosan or hydrophobically modified chitosan, is included in this matrix to impart hemostatic properties and tissue adhesive on the putty. The hemostatic polymers disclosed prevent microbial infection and are suitable for oxygen transfer required during normal wound metabolism.
Abstract:
A formulation for coating surfaces, for example gloves, with a tacky film comprises a hydrophobically modified biopolymer, where the hydrophobic modifications of the biopolymer correspond to between 1 and 90% of available functional groups, a plasticizer, and a volatile solvent. The formulation quickly dries into a tacky film that provides an enhanced friction of the surface.
Abstract:
A formulation for coating surfaces, for example gloves, with a tacky film comprises a hydrophobically modified biopolymer, where the hydrophobic modifications of the biopolymer correspond to between 1 and 90% of available functional groups, a plasticizer, and a volatile solvent. The formulation quickly dries into a tacky film that provides an enhanced friction of the surface.
Abstract:
Aspects of the present disclosure generally relate to compounds for targeting and healing bone fractures. Some of these compounds include a negatively charged oligopeptide comprising an acidic oligopeptide, a linker, which may be hydrolyzable or may be a substrate for the protease cathepsin K, and at least one molecule that promotes bone healing. In some compounds the molecule that promotes bone healing is an anabolic compound that inhibits GSK3β, in some compounds the molecule that promotes the healing of bone fracture is a pro-inflammatory agent such as PGE1. Other embodiments include methods of treating a bone fracture comprising administering a therapeutic amount of any one of the compounds disclosed herein.