Abstract:
PROBLEM TO BE SOLVED: To provide an image-sensor system where the production cost is reduced. SOLUTION: The image-sensor system 200 includes a panel 210 having a plane 212 and a region 214 located on the plane, and an image-sensor module 220 comprising an image-sensor chip which is disposed near the region on the plane and has a first image-sensor area and a second image-sensor area whose detecting ranges cover the range; and a processing unit which is electrically connected to the first image-sensor area and the second image-sensor area. When a pointer 270 such as a hand approaches the region, or the pointer is put in the detecting range of the first image-sensor area and the second image-sensor area, the first image-sensor area and the second image-sensor area detect the presence of the pointer and the processing unit determines the location of the pointer. COPYRIGHT: (C)2010,JPO&INPIT
Abstract:
PROBLEM TO BE SOLVED: To provide a method for producing one wide-angle image combining a plurality of images, an image calibration method of a wide-angle sensor array module, an operation method and application. SOLUTION: This wide-angle sensor array module has a first image sensor S1, a second image sensor S2, a storage unit 22 which stores at least one conversion matrix acquired according to a relative spactial relation between the first image sensor S1 and the second image sensor S2, and a processor 21, wherein the processor 21 combines the first image with the second image using the conversion matrix and produces a composited image. COPYRIGHT: (C)2010,JPO&INPIT
Abstract:
PROBLEM TO BE SOLVED: To provide a sensing system capable of attaining low production cost. SOLUTION: The sensing system senses a pointer and is used to calculate a position of the pointer. The sensing system includes a panel, a reflection element, an image sensor, and a processor. The panel has a first plane and a quadrangular first area located at the first plane and having a first side, a second side, a third side and a fourth side connected in order. The reflection element is disposed on the first side and positioned on the first plane. A second plane of the reflection element is a reflecting surface and forms a second area orthogonal to the first plane of the panel, reflecting on the first area. The image sensor is disposed at a corner at which the third side and the fourth side cross and is positioned on the first plane. A sensing range of the image sensor covers the first area and the second area. The processor is electrically connected with the image sensor. COPYRIGHT: (C)2010,JPO&INPIT
Abstract:
PROBLEM TO BE SOLVED: To provide a controller and a control method for an image display capable of eliminating an influence of an environmental light source. SOLUTION: This controller for controlling the image display 10 is provided with reference objects 12, 14 for generating a prescribed light spectral signal, a modulation part 16 for modulating the prescribed light spectral signal by a prescribed method, and a remote controller 20. The remote controller 20 is provided with an image sensor 24 for receiving the modulated prescribed light spectral signal and for generating a digital signal DS, and a signal processing means 26 for receiving the digital signal DS to be demodulated, for generating a digital image containing only images of the reference objects, and for calculating image variations of the images of the reference objects on the digital image. The remote controller 20 controls therein the image display 10, based on the image variation of the images of the reference objects, and eliminates the influence of other light source generating light of a band overlapped with a band of the prescribed light spectral signal. COPYRIGHT: (C)2008,JPO&INPIT
Abstract:
PROBLEM TO BE SOLVED: To provide a testing apparatus of an image sensor which can generate diffusive luminous flux for testing, and can avert causing wrong decisions to be made, by generating a shadow formed in a light-receiving region due to dust that adheres on lid surface. SOLUTION: In the testing apparatus 490 of the image sensor, even when a luminous flux 130 from a light source 470 is set as the diffusive luminous flux 474, becomes multi-way due to a luminous flux diffusion sheet 480, and this luminous flux 130 is projected on the light-receiving region 120 of the image sensor 100. Even if the luminous flux 130 is cut from a certain direction of the luminous flux 130 by the dust 260 on the surface of a transparent lid 150 and cannot reach a certain point of the light-receiving region 120, the luminous flux 130 of another direction can reach this point. Accordingly, by the dust 260. shadowing of the shadow generated by the dust 260 is eliminated, and the possibility of wrong decision is significantly decreased. COPYRIGHT: (C)2008,JPO&INPIT
Abstract:
PROBLEM TO BE SOLVED: To provide a reading circuit for an image sensor capable of reducing distortion in an image signal so as to improve resolution in image acquiring. SOLUTION: The reading circuit 31 is designed to receive an analog image line signal A1 from an image sensor array 30 of the image sensor 3. An amplifier unit 311 is designed to output an analog signal A2 after amplifying and correcting amplitude of the analog image line signal A1. An m bit analog-digital converter 312 is designed to convert the analog signal A2 to a corresponding m bit digital signal D1 after being linked to the amplifier unit 311. An m-n bit digital converting unit 313 is designed to receive the m bit digital signal D1, and to convert the m bit digital signal D1 to an n bit digital signal D2 (herein m is not less than n) in response to a k bit control signal D3 after being linked to the m bit analog-digital converter 312. COPYRIGHT: (C)2007,JPO&INPIT
Abstract:
PROBLEM TO BE SOLVED: To provide a method for recognizing an image containing a plurality of objects, capable of reducing the probability of wrong determination resulted from that the difference between two images is difficult to identify. SOLUTION: The image recognition method for a dynamic image containing a plurality of objects using the difference in characteristics of the objects uses an image sensor. The method includes: (A) setting a threshold of brightness level of the image; (B) acquiring pixel values of each row sequentially in the image; (C) identifying a background area according to the threshold; (D) identifying the objects to which linear image segments belong according to a spatial correlation between two adjacent rows; (E) collecting accumulated information of the linear image segments for each identified object; (F) determining the characteristic attribute of each object; and (G) recognizing it as any one characteristic attribute of solid, hollow, long and short characteristics. COPYRIGHT: (C)2007,JPO&INPIT
Abstract:
PROBLEM TO BE SOLVED: To provide an interactive input unit which emits light beam invisible to the naked eye and a game peripheral device equipped with a reflection type marking means, both to be used for game computers. SOLUTION: The game peripheral device is used for game computers and consists of a marking means and an interactive input means. The aforementioned marking means has a surface section with reflective layer that reflects invisible light and the aforementioned interactive input means has one or more illuminant sections emitting this invisible light to be reflected back by the aforementioned marking means, an image detection section which forms image data corresponding to the reflected light from the aforementioned marking means and also to the movements of the marking means, a filtering unit placed in front of the aforementioned image detection section which filtrates visible light in the image data formed by the aforementioned image detection section, and an interface section connected electrically to the aforementioned image detection section which outputs the aforementioned image data to the aforementioned game computers. COPYRIGHT: (C)2006,JPO&NCIPI
Abstract:
Optische Navigationsvorrichtung (102) zum Bestimmen einer Relativbewegung zwischen der optischen Navigationsvorrichtung (102) und einer Navigationsoberfläche (104), wobei die optische Navigationsvorrichtung (102) aufweist:eine Lichtquelle (106) zum Beleuchten einer Navigationsoberfläche (104) innerhalb einer Objektebene (152), wobei Spiegellicht von der Navigationsoberfläche (104) entlang eines Spiegelreflexionspfades (144) wegreflektiert und Streulicht von einem Oberflächenmerkmal (142) an der Navigationsoberfläche (104) entlang eines Streulichtpfades (146) wegreflektiert wird, der zum Spiegelreflexionspfad (144) versetzt ist;eine Blendenstufe (118), welche außerhalb des Spiegelreflexionspfads (144) und innerhalb des Streulichtpfades (146) angeordnet ist, wobei die Blendenstufe (118) eine optische Achse (156) hat, welche mittels einer Normalen zu der Blendenstufe (118) definiert ist, wobei die optische Achse (156) der Blendenstufe (118) im Wesentlichen senkrecht zu der Objektebene (156) ist;einen Bildsensor (126) zum Erzeugen eines Navigationsabbildes von Licht, welches von der Navigationsoberfläche (104) weg gestreut wird;wobei die Blendenstufe (118) versetzt von dem beleuchteten Teil der Navigationsoberfläche (104) um einen Winkel von etwa 22 Grad oder mehr und innerhalb der Aperturebene (154) angeordnet ist, welche im Wesentlichen parallel zu der Objektebene (152) ist, insbesondere wobei der Bildsensor innerhalb einer Abbildungsebene (158) angeordnet ist, welche im Wesentlichen parallel zu der Objektebene (152) und der der Aperturebene (154) ist und welche im Wesentlichen senkrecht zur optischen Achse (156) der Blendenstufe (118) ist; undeine exzentrische Feldabbildungslinse (114), welche zwischen der Blendenstufe (118) und dem Bildsensor (116) in dem Streulichtpfad (146) angeordnet ist, um Streulicht durch die Blendenstufe (118) hindruch zu empfangen, wobei die exzentrische Feldabbildungslinse (114) mehrere Linsenoberflächen (160, 162) aufweist, welche in unterschiediichen schiefen Winkeln (α, β) relativ zu der Navigationsoberfläche (104) geneigt sind, um das Licht, welches von der Navigationsoberfläche (104) weggestreut wird, zu dem Bildsensor hin zu richten.
Abstract:
Optischer Navigationsschaltkreis (108) einer optischen Maus, wobei der optische Navigationsschaltkreis (108) aufweist:- einen Bildsensor (126), aufweisend ein Pixelarray (127), um eine Mehrzahl von elektrischen Signalen zu erzeugen, die zu einfallenden Licht an dem Pixelarray (127) korrespondieren;- eine dynamische Rekonfigurationslogik (128), die mit dem Bildsensor (126) gekoppelt ist, wobei die dynamische Rekonfigurationslogik (128) dazu ist, die Mehrzahl von elektrischen Signalen aus dem Pixelarray (127) zu empfangen und eine Mehrzahl von rekonfigurierten elektrischen Signalen zu erzeugen, basierend auf der Mehrzahl von elektrischen Signalen aus dem Pixelarray (127); und- einen digitalen Signalprozessor (122), der mit der dynamischen Rekonfigurationslogik (128) gekoppelt ist, wobei der digitale Signalprozessor (122) dazu ist, die Mehrzahl von rekonfigurierten elektrischen Signalen aus der dynamischen Rekonfigurationslogik (128) zu empfangen und mittels Verwendung der Mehrzahl der rekonfigurierten elektrischen Signale eine Verarbeitung der rekonfigurierten elektrischen Signale durchzuführen, um ein oder mehrere Signale zu ermitteln, die für eine Bewegung der optischen Maus im Verhältnis zu einer Navigationsoberfläche (104) indikativ sind, wobei der optische Navigationsschaltkreis (108) derart eingerichtet ist, dass die dynamische Rekonfigurationslogik (128) eine adaptive Umschaltung zwischen verschiedenen dynamischen Rekonfigurationsbetriebsarten ermöglicht.