Abstract:
The invention generally relates to performing sandwich assays in droplets. In certain embodiments, the invention provides methods for detecting a target analyte that involve forming a compartmentalized portion of fluid including a portion of a sample suspected of containing a target analyte and a sample identifier, a first binding agent having a target identifier, and a second binding agent specific to the target analyte under conditions that produce a complex of the first and second binding agents with the target analyte, separating the complexes, and detecting the complexes, thereby detecting the target analyte.
Abstract:
The invention generally relates to methods for quantifying an amount of enzyme molecules. Systems and methods of the invention are provided for measuring an amount of target by forming a plurality of fluid partitions, a subset of which include the target, performing an enzyme-catalyzed reaction in the subset, and detecting the number of partitions in the subset. The amount of target can be determined based on the detected number.
Abstract:
Microfluidic structures and methods for manipulating fluids, fluid components, and reactions are provided. In one aspect, such structures and methods can allow production of droplets of a precise volume, which can be stored/maintained at precise regions of the device. In another aspect, microfluidic structures and methods described herein are designed for containing and positioning components in an arrangement such that the components can be manipulated and then tracked even after manipulation. For example, cells may be constrained in an arrangement in microfluidic structures described herein to facilitate tracking during their growth and/or after they multiply.
Abstract:
The invention generally relates to droplet based digital PCR and methods for analyzing a target nucleic acid using the same. In certain embodiments, a method for determining the nucleic acid make-up of a sample is provided.
Abstract:
The invention provides barcode libraries and methods of making and using them including obtaining a plurality of nucleic acid constructs in which each construct comprises a unique N-mer and a functional N-mer and segregating the constructs into a fluid compartments such that each compartment contains one or more copies of a unique construct. The invention further provides methods for digital PCR and for use of barcode libraries in digital PCR.
Abstract:
The present invention provides novel microfluidic devices and methods that are useful for performing high-throughput screening assays and combinatorial chemistry. The invention provides for aqueous based emulsions containing uniquely labeled cells, enzymes, nucleic acids, etc., wherein the emulsions further comprise primers, labels, probes, and other reactants. An oil based carrier-fluid envelopes the emulsion library on a microfluidic device, such that a continuous channel provides for flow of the immiscible fluids, to accomplish pooling, coalescing, mixing, sorting, detection, etc., of the emulsion library.
Abstract:
The invention provides methods for assessing one or more predetermined characteristics or properties of a microfluidic droplet within a microfluidic channel, and regulating one or more fluid flow rates within that channel to selectively alter the predetermined microdroplet characteristic or property using a feedback control.
Abstract:
The present invention provides novel microfluidic substrates and methods that are useful for performing biological, chemical and diagnostic assays. The substrates can include a plurality of electrically addressable, channel bearing fluidic modules integrally arranged such that a continuous channel is provided for flow of immiscible fluids.
Abstract:
The invention generally relates to droplet based digital PCR and methods for analyzing a target nucleic acid using the same. In certain embodiments, methods of the invention involve forming sample droplets containing, on average, a single target nucleic acid, amplifying the target in the droplets, excluding droplets containing amplicon from the target and amplicon from a variant of the target, and analyzing target amplicons.
Abstract:
The present invention provides novel microfluidic devices and methods that are useful for performing high-throughput screening assays and combinatorial chemistry. The invention provides for aqueous based emulsions containing uniquely labeled cells, enzymes, nucleic acids, etc., wherein the emulsions further comprise primers, labels, probes, and other reactants. An oil based carrier-fluid envelopes the emulsion library on a microfluidic device, such that a continuous channel provides for flow of the immiscible fluids, to accomplish pooling, coalescing, mixing, sorting, detection, etc., of the emulsion library.