Abstract:
This invention overcomes disadvantages of the prior art by providing a system and method that allows for the calibration of a display system using one or more cameras whose lenses are not modeled, or are modeled with limited accuracy, and are potentially incapable of imaging the entire projector system. The illustrative system and method generally relies on well-established models of the projectors, rather than well-established models of the cameras. Illustratively, the cameras serve mainly to map the projectors into one coordinate system, where the overlap between the projectors can be established very precisely using a camera, even if the model of the camera lens properties is not known, or known only minimally.
Abstract:
A method and system for improving display quality by injecting a portion of computer code into an existing compositor, using the portion of computer code to apply a mapping function to a first digital image, and forming a second digital image based upon the first digital image as adapted by applying the applied mapping function in the compositor. The second digital image may then be displayed to a viewer via one or more displays where each display forms a part of the displayed digital image. The result may be used for creation of blended or stereoscopic images. The mapping function may be also adapted for modification of geometry or correction of a characteristic (such as color, intensity, etc.) of the display system where such characteristic may be sensed using a detector. The portion of code may be injected into a graphics driver controlling hardware composition for a displayed digital image.
Abstract:
A display system and method created by adjusting the properties of one or more displays to obtain coarse control over display behavior, by using sensors to optimize display parameters and meet a quality target. The display may construct a display map by selectively driving the display and sensing the optical image created. The system reports on its status, and is able to predict when the system will no longer meet a quality target. The system and method may optimize a display system and keep it optimized over time. Operators of the display who require a minimum level of quality for the display system can be ensured that the display meets those requirements. And, they can be warned in advance as to when system maintenance can be necessary, when quality falls below targeted goals system and method provides for sending out methods of the quality of the system.
Abstract:
This invention overcomes disadvantages of the prior art by providing a system and method that allows for the calibration of a display system using one or more cameras whose lenses are not modeled, or are modeled with limited accuracy, and are potentially incapable of imaging the entire projector system. The illustrative system and method generally relies on well-established models of the projectors, rather than well-established models of the cameras. Illustratively, the cameras serve mainly to map the projectors into one coordinate system, where the overlap between the projectors can be established very precisely using a camera, even if the model of the camera lens properties is not known, or known only minimally.
Abstract:
This invention provides a calibration system and method for multi-unit display systems without a need for switching the system input resolution/configuration of the display system while calibrating. This serves to avoid carrying out a re-synchronization step. As such, this system and method allows for increases speed and reduced likelihood of failure. This system and method also corrects the display system by providing an arrangement that employs a minimum of required changes so as to avoid any changes that can consequently affect the output image of the display system. Calibration of the system of display units occurs free of any changes to the input resolution and this resolution is maintained in a manner that resists change unless specifically required. Moreover, this system and method enables a resolution for the overall system that differs from the sum of the input resolutions of the discrete, individual display units in the collection.
Abstract:
This invention overcomes disadvantages of the prior art by providing a system and method that allows for the calibration of a display system using one or more cameras whose lenses are not modeled, or are modeled with limited accuracy, and are potentially incapable of imaging the entire projector system. The illustrative system and method generally relies on well-established models of the projectors, rather than well-established models of the cameras. Illustratively, the cameras serve mainly to map the projectors into one coordinate system, where the overlap between the projectors can be established very precisely using a camera, even if the model of the camera lens properties is not known, or known only minimally.
Abstract:
A method and system for improving display quality by injecting a portion of computer code into an existing compositor, using the portion of computer code to apply a mapping function to a first digital image, and forming a second digital image based upon the first digital image as adapted by applying the applied mapping function in the compositor. The second digital image may then be displayed to a viewer via one or more displays where each display forms a part of the displayed digital image. The result may be used for creation of blended or stereoscopic images. The mapping function may be also adapted for modification of geometry or correction of a characteristic (such as color, intensity, etc.) of the display system where such characteristic may be sensed using a detector. The portion of code may be injected into a graphics driver controlling hardware composition for a displayed digital image.
Abstract:
This invention provides an improved display system and method that is created by adjusting the properties of one or more displays to obtain coarse control over display behavior, by using sensors to optimize display parameters. The display is further improved by constructing a display map by selectively driving the display and sensing the optical image created. Furthermore, the sensors are used to ensure that the resulting optimized display meets target quality measurements over time, potentially taking into account ambient conditions. The system reports on its status, and is able to predict when the system will no longer meet a quality target. The system and method is able to optimize a display system and keep it optimized over time. Individual displays with the display system can have operating points that are matched to each other. Corrections to the input image signal to deliver improved display system performance can be minimized, and therefore, the unwanted artifacts of those changes can be minimized. If the displays drift over time, those operating points can be updated. If ambient conditions change, and new operating points are desired, the new operating points can be automatically selected. Operators of the display who require a minimum level of quality for the display system (e.g. a minimum intensity level) can be ensured that the display meets those requirements. And, they can be warned in advance as to when system maintenance can be necessary, when quality falls below targeted goals system and method provides for sending out methods of the quality of the system such an in an e- mail, perhaps in the form of graphs. Or, the system in method allows for prediction of when quality targets will not be met. Prediction is useful for a display system operator who needs to know when to perform maintenance, such as changing a light bulb (light source) in a projector.