Abstract:
Methods for the production of insulin in plants are described. In one embodiment, the present invention provides a method for the expression of insulin in plants comprising: (a) providing a chimeric nucleic acid construct comprising in the 5’ supl; to 3’ direction of transcription as operably linked components: (i) a nucleic acid sequence capable of controlling expression in plant seed cells; and (ii) a nucleic acid sequence encoding an insulin polypeptide; (b) introducing the chimeric nucleic acid construct into a plant cell; and (c) growing the plant cell into a mature plant capable of setting seed wherein the seed expresses insulin.
Abstract:
A method for the separation of a target molecule from a mixture is described. The method employs oil bodies and their associated proteins as affinity matrices for the selective, non-covalent binding of desired target molecules. The oil body proteins may be genetically fused to a ligand having specificity for the desired target molecule. Native oil body proteins can also be used in conjunction with an oil body protein specific ligand such as an antibody or an oil body binding protein. The method allows the separation and recovery of the desired target molecules due to the difference in densities between oil bodies and aqueous solutions.
Abstract:
Novel methods for the expression of non-native genes in flax seeds and the seeds of other plant species are provided. The methods involve the use of seed-specific promoters obtained from flax. Additionally provided are novel flax seed-specific promoters, chimeric nucleic acid constructs comprising novel flax seed-specific promoters, transgenic plant cells, transgenic plants and transgenic plant seeds containing novel flax seed-specific promoters. The promoters and methods are useful, for example, for altering the seed oil and protein composition in flax seed or other plant seeds.
Abstract:
Methods and compositions for use therein are described for expressing a polypeptide of interest in a seed cell as a fusion protein with an oil body protein. By this means, the fusion protein is targeted to the oil bodies of a seed cell. The oil body is easily separated from other cellular material following lysis of the seed cell, for example by using the partitioning/surface properties of the oil body. The fusion protein may be isolated for example by affinity chromatography using antibodies directed to the oil body protein. Where desired, the polypeptide of interest can be recovered by treatment of the fusion protein with for example a protease capable of recognizing a proteolytic recognition site in the oil body protein proximal to the N-terminus of the polypeptide of interest.
Abstract:
Improved methods for the production of multimeric-protein-complexes, such as redox proteins and immunoglobins, in association with oil bodies are described. The redox protein is enzymatically active when prepared in association with the oil bodies. Also provided are related nucleic acids, proteins, cells, plants, and compositions.
Abstract:
The physical stability of oleosomes is preserved in a composition by introducing a multihydric alcohol and an acid that can reduce the pH of the composition of less than 6. The resultant composition can be useful in the manufacture of cosmetic, food, and pharmaceutical products, among others.
Abstract:
Methods for the production of insulin in plants are described. In one embodiment, the present invention provides a method for the expression of insulin in plants comprising: (a) providing a chimeric nucleic acid construct comprising in the 5' to 3' direction of transcription as operably linked components: (i) a nucleic acid sequence capable of controlling expression in plant seed cells; and (ii) a nucleic acid sequence encoding an insulin polypeptide; (b) introducing the chimeric nucleic acid construct into a plant cell; and (c) growing the plant cell into a mature plant capable of setting seed wherein the seed expresses insulin.
Abstract:
The release rate of an active agent from oleosomes can be modulated by formulation of the oleosomes with a release control agent, such as a multihydric alcohol. In this context, oleosomes containing an active agent may be used in the preparation of a variety of formulations, including formulations for topical use.
Abstract:
Methods for the production of insulin in plants are described. In one embodiment, the present invention provides a method for the expression of insulin in plants comprising: (a) providing a chimeric nucleic acid construct comprising in the 5' to 3' direction of transcription as operably linked components: (i) a nucleic acid sequence capable of controlling expression in plant seed cells; and (ii) a nucleic acid sequence encoding an insulin polypeptide; (b) introducing the chimeric nucleic acid construct into a plant cell; and (c) growing the plant cell into a mature plant capable of setting seed wherein the seed expresses insulin.