Abstract:
A method for manufacturing a NdFeB rare earth permanent magnetic device with composite plating includes steps of: firstly melting alloy, casting the alloy in a melted state onto a rotation copper roller with a water cooling function, so as to be cooled for forming alloy flakes; hydrogen decrepitating; mixing after hydrogen decrepitating; jet milling after mixing; mixing under nitrogen protection before molding in a nitrogen protection magnetic field pressing machine, and then packing in a protection tank before being moved out of the protection tank and isostatic pressing; sintering in a sintering device and aging for forming a NdFeB rare earth permanent magnet; machining for forming a NdFeB rare earth permanent magnetic device; and plating the NdFeB rare earth permanent magnetic device, wherein three layers of plated films are formed.
Abstract:
A method and an equipment for processing NdFeB rare earth permanent magnetic alloy with a hydrogen pulverization are provided. The method includes steps of: providing a continuous hydrogen pulverization equipment; while driving by a transmission device, passing a charging box loaded with rare earth permanent magnetic alloy flakes orderly through a hydrogen absorption chamber, having a temperature of 50-350° C. for absorbing hydrogen, a heating and dehydrogenizing chamber, having a temperature of 600-900° C. for dehydrogenating, and a cooling chamber of the continuous hydrogen pulverization equipment; receiving the charging box by a discharging chamber through a discharging valve; pouring out the alloy flakes after the hydrogen pulverization into a storage tank at a lower part of the discharging chamber; sealing up the storage tank under a protection of nitrogen; and, moving the charging box out through a discharging door of the discharging chamber and re-loading, for repeating the previous steps.
Abstract:
A continuous sintering method for rare earth permanent magnetic alloy comprises: connecting a preparation chamber, a glove chamber and a sealed transmission chamber, a sealed chamber, a charging chamber, a preheating chamber, a heating and de-airing chamber, a sintering chamber and a cooling chamber one after another. A press formed blank of rare earth permanent magnetic alloy powder is transmitted under oxygen free condition, and processed with heating and de-airing, sintering and cooling. The preparation chamber, the glove chamber and the sealed transmission chamber are transmitted by bottom rollers, transmissions of other chambers are provided on a top portion of each chamber, and conveyed by roller rails. The rollers of the charging rack are suspended on rails of the transmissions. The drawer model charging rack is capable of loading multiple charging box.
Abstract:
A continuous hydrogen pulverization method of a rare earth permanent magnetic alloy includes: providing a hydrogen adsorption room, a heating dehydrogenation room and a cooling room in series, applying hydrogen adsorption, heating dehydrogenation and cooling on a rare earth permanent magnetic alloy in the production device at the same time, wherein collecting and storing under an inert protection atmosphere can also be provided. Continuous production is provided under vacuum and the inert protection atmosphere in such a manner that an oxygen content of the pulverized powder is low and a proportion of single crystal in the powder is high.
Abstract:
A method for flexibly sintering rare earth permanent magnetic alloy comprises: (1) weighing fine powder of rare earth permanent magnetic alloy, loading the fine powder in moulds, and orientedly compacting the fine powder in a press machine and in inert atmosphere to obtain blanks and loading the blanks into charging boxes; (2) after air between the second conveying vehicle and the first isolating valve of the glove box is replaced with inert gas, opening the two isolating valves connected with each other; wherein after a first rolling wheel transmission in the second conveying vehicle transfers the charging tray into the first chamber of the glove box, the two isolating valves are closed, and the second conveying vehicle leaves; (3) after a first conveying vehicle is coupled with a third isolating valve at an end of the second chamber, locking two matching flanges of the two isolating valves tightly; (4) after the first conveying vehicle is coupled with an isolating valve of a sintering furnace, locking matching flanges tightly; and (5) after the sintering furnace is evacuated to a vacuum degree more than 50Pa, or the sintering furnace is filled with protective gas, processing the blanks with heating and heat preservation according to a preset process curve; wherein the blanks are sintered at a highest temperature of 1200°C. The present invention significantly increases performance of magnets.
Abstract:
A method of powdering NdFeB rare earth permanent magnetic alloy includes: adding mixed powder after a hydrogen pulverization into a grinder; grinding the powder with a high-speed gas flow ejected by a nozzle; sending the ground powder into a centrifugal sorting wheel with the gas flow; collecting, by a cyclone collector, fine power selected by the sorting wheel; collecting, by a post cyclone collector, the fine powder discharged out with the gas flow from a gas discharging pipe of the cyclone collector; introducing, by a depositing device, the fine powder collected by the cyclone collector and by the post cyclone collector into a depositing tank; compressing, by a compressor, and cooling, by a cooler, the gas discharged by the post cyclone collector; and then sending the gas into a gas inlet of the nozzle for recycling. A device thereof is also provided.
Abstract:
A method for flexibly sintering rare earth permanent magnetic alloy comprises: (1) weighing fine powder of rare earth permanent magnetic alloy, loading the fine powder in moulds, and orientedly compacting the fine powder in a press machine and in inert atmosphere to obtain blanks and loading the blanks into charging boxes; (2) after air between the second conveying vehicle and the first isolating valve of the glove box is replaced with inert gas, opening the two isolating valves connected with each other; wherein after a first rolling wheel transmission in the second conveying vehicle transfers the charging tray into the first chamber of the glove box, the two isolating valves are closed, and the second conveying vehicle leaves; (3) after a first conveying vehicle is coupled with a third isolating valve at an end of the second chamber, locking two matching flanges of the two isolating valves tightly; (4) after the first conveying vehicle is coupled with an isolating valve of a sintering furnace, locking matching flanges tightly; and (5) after the sintering furnace is evacuated to a vacuum degree more than 50Pa, or the sintering furnace is filled with protective gas, processing the blanks with heating and heat preservation according to a preset process curve; wherein the blanks are sintered at a highest temperature of 1200°C. The present invention significantly increases performance of magnets.
Abstract:
A method for flexibly sintering rare earth permanent magnetic alloy comprises: (1) weighing fine powder of rare earth permanent magnetic alloy, loading the fine powder in moulds, and orientedly compacting the fine powder in a press machine and in inert atmosphere to obtain blanks and loading the blanks into charging boxes; (2) after air between the second conveying vehicle and the first isolating valve of the glove box is replaced with inert gas, opening the two isolating valves connected with each other; wherein after a first rolling wheel transmission in the second conveying vehicle transfers the charging tray into the first chamber of the glove box, the two isolating valves are closed, and the second conveying vehicle leaves; (3) after a first conveying vehicle is coupled with a third isolating valve at an end of the second chamber, locking two matching flanges of the two isolating valves tightly; (4) after the first conveying vehicle is coupled with an isolating valve of a sintering furnace, locking matching flanges tightly; and (5) after the sintering furnace is evacuated to a vacuum degree more than 50Pa, or the sintering furnace is filled with protective gas, processing the blanks with heating and heat preservation according to a preset process curve; wherein the blanks are sintered at a highest temperature of 1200°C. The present invention significantly increases performance of magnets.