Abstract:
A chip includes a CMOS structure having a bulk device (20) disposed in a first region (24) of a semiconductor substrate (50) in conductive communication with an underlying bulk region (18) of the substrate, the first region (24) and the bulk region (20) having a first crystal orientation. A SOI device (10) is disposed in a semiconductor-on-insulator ("SOI") layer (14) separated from the bulk region of the substrate by a buried dielectric layer (16), the SOI layer having a different crystal orientation from the first crystal orientation. In one example, the bulk device includes a p-type field effect transistor ("PFET") and the SOI device includes an n-type field effect transistor ("NFET") device. Alternatively, the bulk device can include an NFET and the SOI device can include a PFET. When the SOI device has a gate conductor (11) in conductive communication with a gate conductor (21) of the bulk device, charging damage can occur to the SOI device, except for the presence of diodes in reverse-biased conductive communication with the bulk region. The diodes are operable to conduct a discharge current to the bulk region when either a voltage on the gate conductor or a voltage on the source or drain region of the SOI device exceeds a diode's breakdown voltage.
Abstract:
A method of forming a semiconductor device, and the device so formed. Depositing alternating layers of a first dielectric material (12a-f) and a second dielectric material (14a-f), wherein the first and second dielectric materials are selectively etchable at different rates. Forming a first feature (22, 24) within the alternating layers of dielectric material. Selectively etching the alternating layers of dielectric material to remove at least a portion (26) of the first dielectric material in each layer having the first dielectric material and leaving the second dielectric material as essentially unetched.
Abstract:
A CMOS image sensor array (100) and method of fabrication wherein the sensor includes Copper (Cu) metallization levels (M1, M2) allowing for incorporation of a thinner interlevel dielectric stack (13 Oa-c) with improved thickness uniformity to result in a pixel array exhibiting increased light sensitivity. In the sensor array, each Cu metallization level includes a Cu metal wire structure (135a, 135b) formed at locations between each array pixel and, a barrier material layer (132a, 132b) is formed on top each Cu metal wire structure that traverses the pixel optical path. By implementing a single mask or self-aligned mask methodology, a single etch is conducted to completely remove the interlevel dielectric and barrier layers that traverse the optical path. The etched opening (51) is then refilled with dielectric material (150). Prior to depositing the refill dielectric, a layer of either reflective or absorptive material (140) is formed along the sidewalls of the etched opening to improve sensitivity of the pixels by either reflecting light to the underlying photodiode (18) or by eliminating light reflections.