System and method of classifying spectral power distributions

    公开(公告)号:US11085819B2

    公开(公告)日:2021-08-10

    申请号:US17015496

    申请日:2020-09-09

    Abstract: A means to automate, using fuzzy logic, the classification of spectral power distributions of optical radiation for lighting systems, and more particularly horticultural lighting systems, is presented. After inputting the spectral power distribution of optical radiation from one or more light sources, radial basis function weights for the spectral power distribution are determined and fuzzified preparatory to fuzzy logic classification. Fuzzy if-then rules are then applied, and an aggregate of the rule votes from the fuzzy if-then rules applied is used to classify the spectral power distribution. The system utilizes a spectral sensor, a fuzzifier module, a fuzzy rule database, fuzzy rule engine, an output fuzzifier module, and a means of displaying the spectral power distribution classification.

    Predictive daylight harvesting system

    公开(公告)号:US09955552B2

    公开(公告)日:2018-04-24

    申请号:US14792590

    申请日:2015-07-06

    Abstract: In an example, an expected sky condition is calculated for a geographic location, a time of day, and a date based on a mathematical model. A predicted distribution of direct and interreflected solar radiation within the environment is calculated based on the expected sky condition. Measurement data from one or more photosensors is obtained that provides measurements of an initial distribution of direct and interreflected radiation within the environment, including radiation from solar and electrical lighting sources. A target distribution of direct and interreflected artificial electromagnetic radiation produced by electrical lighting is determined, based on the measurement data and the predicted distribution of direct and interreflected solar radiation, to achieve the target distribution of direct and interreflected radiation within the environment. Output parameters are set to one or more devices to modify the initial distribution to achieve the target distribution of direct and interreflected radiation within the environment.

    PREDICTING SPHERICAL IRRADIANCE FOR VOLUME DISINFECTION

    公开(公告)号:US20220288261A1

    公开(公告)日:2022-09-15

    申请号:US17632442

    申请日:2021-07-08

    Abstract: Given the complexity of architectural spaces and the need to calculate spherical irradiances, it is difficult to determine how much ultraviolet radiation is necessary to adequately kill airborne pathogens. An interior environment with luminaires is modeled. Spherical irradiance meters are positioned in the model and the direct and indirect spherical irradiance is calculated for each sensor. From this, an irradiance field is interpolated for a volume of interest, and using known fluence response values for killing pathogens, a reduction in the pathogens is predicted. Based on the predicted reduction, spaces are built accordingly, and ultraviolet luminaires are installed and controlled.

    TEMPORALLY MODULATED LIGHTING SYSTEM AND METHOD

    公开(公告)号:US20220007479A1

    公开(公告)日:2022-01-06

    申请号:US17478088

    申请日:2021-09-17

    Abstract: Electric light sources typically exhibit temporal variations in luminous flux output, commonly referred to as “flicker.” Flicker, or temporal modulation, is known to influence the growth, health and behavior patterns of humans, and is also linked to growth, health and behavior patterns throughout the growth cycle of plants and animals. Control of peak radiant flux emitted by a light source to temporally modulate a light source will allow for the control of plants and animals for sustainable farming including but not limited to horticultural, agricultural, or aquacultural endeavors. The light source allows the transmission of daylight, which is combined with the flicker.

    Temporally modulated lighting system and method

    公开(公告)号:US11129253B2

    公开(公告)日:2021-09-21

    申请号:US16926677

    申请日:2020-07-11

    Abstract: Electric light sources typically exhibit temporal variations in luminous flux output, commonly referred to as “flicker.” Flicker, or temporal modulation, is known to influence the growth, health and behavior patterns of humans, and is also linked to growth, health and behavior patterns throughout the growth cycle of plants and animals. Control of peak radiant flux emitted by a light source to temporally modulate a light source will allow for the control of plants and animals for sustainable farming including but not limited to horticultural, agricultural, or aquacultural endeavors. The light source allows the transmission of daylight, which is combined with the flicker.

    Supervised training data generation for interior environment simulation

    公开(公告)号:US11080441B2

    公开(公告)日:2021-08-03

    申请号:US16158267

    申请日:2018-10-11

    Abstract: A dense array of sensors positioned in a virtual environment is reduced to a sparse array of sensors in a physical environment, which provides sufficient information to a controller that responds to environmental conditions and parameters in the physical environment in substantially the same manner as it would to the same environmental conditions and parameters in the equivalent virtual environment. Data from a sparse array of virtual sensors is correlated with data from a dense array of virtual sensors and is used for generating control signals for hardware devices that influence a real or virtual interior environment. The correlated data and the control signals are used to train an artificial intelligence based controller that then controls the values of the parameters of the interior environment. A model of the interior environment is created using basic parameters in a computer-aided design application.

    DIFFUSED FIBER-OPTIC HORTICULTURAL LIGHTING

    公开(公告)号:US20210185937A1

    公开(公告)日:2021-06-24

    申请号:US17177579

    申请日:2021-02-17

    Abstract: Laser light emanates from optical components that are mounted on a substrate, each optical component being coupled to an optical fiber that delivers laser radiation combined from multiple lasers. A linear or elliptical holographic diffuser is located to diffuse the light emanating from the optical components. The laser wavelengths excite plant photopigments for predetermined physiological responses, and the light source intensities may be temporally modulated to maximize photosynthesis and control photomorphogenesis responses. Each laser is independently controlled.

Patent Agency Ranking