Abstract:
A magnetic torque sensing device having a disk-shaped member with a magnetoelastically active region. The magnetoelastically active region has oppositely polarized magnetically conditioned regions with initial directions of magnetization that are perpendicular to the sensitive directions of magnetic field sensor pairs placed proximate to the magnetically active region. Magnetic field sensors are specially positioned in relation to the disk-shaped member to accurately measure torque while providing improved RSU performance and reducing the detrimental effects of compassing.
Abstract:
A method is provided for achieving SRAM output characteristics from DRAMs, in which a plurality of DRAMs are arranged connected in parallel to a controller in such a way as to be able to obtain SRAM output characteristics using the DRAMs, comprising a process in which data is output to an external device when a control signal for data reading has been input from the external device, by sequentially repeating a step in which the controller sends a data output state control signal to one DRAM and sends a refresh standby state control signal to the other DRAMs, the data is read and sent to the external device from the DRAM in the output state, and a refresh standby state control signal is sent to the DRAM which was in the output state while an output state control signal is sent to another DRAM and data is read out from the DRAM in the output state, and a step in which the controller sends a control signal for changing the output state to the refresh standby state.
Abstract:
The present invention relates to a cap assembly mounted on a discharging portion of a container for containing an ingredient different from that in accommodated in a container, which comprise a cap body having a housing formed with a chamber for storage of a secondary ingredient, a closing element provided at a lower end opening of the housing for opening the lower end opening under pressure so as to open the lower end opening.
Abstract:
A bottle cap which is combined with a beverage container in the direction of discharge or drinking, comprised of; a main body combined with the container; a storage space inside the main body which contains additives, and; filter holes formed above and below the storage space to keep the additives within the storage space; and the additives in the storage space is soluble in the liquid in the container and discharged through a spout above, and the flow path of the liquid is characterized by being configured to lead the liquid to the storage space of the additives to facilitate dissolution of the additives.
Abstract:
A cap assembly that can be associated with a container storing a primary material includes a lid fixed on a top of the container and having an exhausting portion projected upward, a cap main body detachably coupled to the exhausting portion of the lid and having a storage tube extending downward to define a storage chamber for storing a secondary material, and an inner cap body detachably coupled to the storage tube.
Abstract:
A drain plug comprising of a plurality of polarity magnets arranged in an alternating fashion. The plurality of polarity magnets are arranged in line with the drain plug. A magnet cover envelops the plurality of polarity magnets for easy cleaning. The unique alternating arrangements of the plurality of polarity magnets help increase the magnetic gradient for stronger attraction forces for metal wear particles. The use of a plurality of polarity magnets also increase the surface area where the metal particles can be held.
Abstract:
Provided are a Schottky barrier tunnel transistor and a method of manufacturing the same that are capable of minimizing leakage current caused by damage to a gate sidewall of the Schottky barrier tunnel transistor using a Schottky tunnel barrier naturally formed at a semiconductor-metal junction as a tunnel barrier. The method includes the steps of: forming a semiconductor channel layer on an insulating substrate; forming a dummy gate on the semiconductor channel layer; forming a source and a drain at both sides of the dummy gate on the insulating substrate; removing the dummy gate; forming an insulating layer on a sidewall from which the dummy gate is removed; and forming an actual gate in a space from which the dummy gate is removed. In manufacturing the Schottky barrier tunnel transistor using the dummy gate, it is possible to form a high-k dielectric gate insulating layer and a metal gate, and stable characteristics in silicidation of the metal layer having very strong reactivity can be obtained.
Abstract:
Provided are a Schottky barrier tunnel transistor and a method of manufacturing the same that are capable of minimizing leakage current caused by damage to a gate sidewall of the Schottky barrier tunnel transistor using a Schottky tunnel barrier naturally formed at a semiconductor-metal junction as a tunnel barrier. The method includes the steps of: forming a semiconductor channel layer on an insulating substrate; forming a dummy gate on the semiconductor channel layer; forming a source and a drain at both sides of the dummy gate on the insulating substrate; removing the dummy gate; forming an insulating layer on a sidewall from which the dummy gate is removed; and forming an actual gate in a space from which the dummy gate is removed. In manufacturing the Schottky barrier tunnel transistor using the dummy gate, it is possible to form a high-k dielectric gate insulating layer and a metal gate, and stable characteristics in silicidation of the metal layer having very strong reactivity can be obtained.
Abstract:
Provided is a method of manufacturing a semiconductor device in which properties of photoresist through a lithography process are changed to form a dummy structure, and the structure is applied to a process of forming a gate electrode. The method includes the steps of: forming a buffer layer on the top of a semiconductor substrate; applying an inorganic photoresist on the buffer layer, and forming a photoresist pattern using a lithography process; thermally treating the photoresist pattern using a predetermined gas; uniformly depositing an insulating layer on the thermally treated structure, and etching the deposited layer by the deposited thickness in order to expose the thermally treated photoresist pattern; depositing an insulating layer on the etched structure, and etching the deposited insulating layer to expose the thermally treated photoresist pattern; removing the exposed photoresist pattern using an etching process; forming a gate oxide layer in the portion in which the photoresist pattern is removed; and forming a gate electrode on the gate oxide layer. Accordingly, in forming a structure for manufacturing a nano-sized device, the properties of the layer formed by a lithography process are improved through thermal treatment, and thus the structure used to manufacture various devices can be easily formed.
Abstract:
Provided is a method for fabricating a Schottky barrier tunnel transistor (SBTT) that can fundamentally prevent the generation of a gate leakage current caused by damage of spacers formed on both sidewalls of a gate electrode. The method for fabricating a Schottky barrier tunnel transistor, which includes: a) forming a silicon pattern and a sacrificial pattern on a buried oxide layer supported by a support substrate; b) forming a source/drain region on the buried oxide layer exposed on both sides of the silicon pattern, the source/drain region being formed of a metal layer and being in contact with both sidewalls of the silicon pattern; c) removing the sacrificial pattern to expose the top surface of the silicon pattern; and d) forming a gate insulating layer and a gate electrode on the exposed silicon pattern.