Abstract:
A Method for increasing coverage and robustness against frequency offsets in wireless networks, user device and computer program productsIn the method, a user device (171) that wirelessly communicates with a base station (172) through a wireless network employing a Single Carrier-Frequency Division Multiple Access, SC-FDMA, comprises: applying a number of calculated repetitions of a block of complex information symbols prior to a SC-FDMA modulator (176), said number of repetitions being an integer submultiple of a number of subcarriers scheduled for uplink transmission according to the expression: NscUL=L×M with L and M integers; and applying, when mapping to scheduled resources in the SC-FDMA modulator (176), a frequency shift equal to a subcarrier width multiplied by one half of said number of repetitions.
Abstract:
The method comprising allowing a wireless broadband connection between at least one wireless device including a tethering function with at least one wired broadband device, and using said tethering function for sharing said wireless broadband connection through aggregating a bandwidth of said wired broadband device to said at least one wireless device, wherein a segmentation of application packets of information, at the layer of the application protocol enabling said connection, namely the application layer, is performed into sub packets that will be transmitted to said at least one wireless device, using a proxy including a set of application handler modules handling packets of information for said connection.The system of the invention is adapted to implement the method of the invention.
Abstract:
The method comprises providing a gateway with configuration information regarding an unknown device to be attached thereto, the method comprising: providing a Dynamic Pair-up function in said gateway; using, the gateway, said Dynamic Pair-up function to retrieve said configuration information from a data source; and using, the gateway, said retrieved configuration information to automatically establish communication with said device. The system is configured for implementing the method of the invention.
Abstract:
The method comprising estimating, at least one wireless user device (UE) its own velocity from at least one downlink pilot signal being transmitted by any base station from a plurality of different base stations, and further comprising:—broadcasting each one of said plurality of different base stations a parameter relative to its own cell size;—performing said at least one wireless user device in idle mode cell selections and reselections based on said plurality of base station cell size parameters received and said at least one wireless user device estimated velocity; and—reporting, said at least one wireless user device in connected mode, said estimated velocity and cell sizes of neighboring base stations to a serving base station in order to perform handovers based on said reported estimated velocity and said neighboring base station cell sizes.
Abstract:
The method comprising at least one user device provided with at least four antennas, wirelessly connected to a serving base station having between one and four transmit antennas and suffering interferences from at least one interfering base station having between one and four transmit antennas, establishing a data transmission link among a plurality of antennas, and: applying a time shift delay between said serving base station and said at least one interfering base station in order to avoid collision between Cell Reference Signals (CRS) of serving and interfering base stations when said data transmission is established; and introducing changes on the physical layer for PDSCH transmission and reception aimed at achieving inter-layer interference cancellation, said changes introduced comprising the introduction of a pattern of transmission gaps at symbols (l) and subcarrier indices (k) of interfering cell's CRS signals, which will be exploited by said at least one user device for effective interference cancellation.
Abstract:
The method providing by a plurality of eNodeB wireless mobile connectivity to a plurality of User Equipment (UE) and aggregating by means of a node running in non-3GPP network, backhaul load information related to the access line of said plurality of eNodeB or any other remote equipment. The method also, retrieving by a Proxy Serving Gateway (Proxy S-GW) located in said non-3GPP node, said backhaul load information from said non-3GPP node of said plurality of eNodeB; then, communicating said Proxy S-GW with a Service Gateway (S-GW) pertaining to a 3GPP network by means of a standard S1 interface; and finally sending to said S-GW said backhaul load information through said standard S1 interface in order to assign radio resources to said plurality of eNodeB.The system is adapted for implementing the method of the invention.
Abstract:
The method includes: performing a packet scheduling for a plurality of user terminals (UEs) based on information regarding QoS classes, the information regarding QoS classes is included in QoS class identifiers received from an Evolved Packet Core providing communication services to the user terminals. The method further includes receiving channel quality indicators from the plurality of user terminals and performing the scheduling also on the basis of the received channel quality indicators. The system of the invention is arranged to implement the method of the invention.
Abstract:
The method comprising a base station equipped with a large number of antennas according to a two-dimensional rectangular array and a number M of cell users, said rectangular array comprising N1 antenna elements along one axis with a regular spacing dx and N2 antenna elements along a perpendicular axis with a regular spacing dy, said users being characterized by angles (θ,φ) in a spherical coordinate system, where in order to achieve orthogonal multiple access the method comprises: selecting a grid spacing (Δu,Δv) in the (u, v) domain; discretizing the (u, v) domain; constructing a set of signals ST[k,l,f]; calculating time-domain excitations AT[n,m,t] for the antenna elements in the array given by coordinates (ndx,mdy) for generation of the downlink transmit signals; and obtaining the frequency contents SR[k,l,f] of the complex baseband signals received from the M users in the uplink.The system implements the method of the invention.
Abstract:
The system comprising an application CSO gateway coupled to an application layer that configures and monitors a plurality of Data Center Elements storing computing resources; a network CSO gateway coupled to a network layer that configures and monitors a plurality of Network Elements and to receive requests from said ACG to configure connections, wherein the system further includes a Client entity coupled in an already deployed Network Element or in a Data Center Element configured to monitor a segment of the network where said Client entity is found; an IT-Aware Network Controller coupled to said network layer configured to run operations in and from the network regarding information of said monitored network information and of said Data Center Elements; and interfaces coupling the different elements of the system allowing the interconnection and communication between them.The method of the invention is intended to be implemented by the system of the invention.
Abstract:
A system and method for training and validating ML algorithms in real networks, including: generating synthetic traffic and receiving it along with real traffic; aggregating the received traffic into network flows by using metadata and transforming them to generate a first dataset readable by the ML algorithm, comprising features defined by the metadata; labelling the traffic and selecting a subset of the features from the labelled dataset used in an iterative training to generate a trained model; filtering out a part of real traffic to obtain a second labelled dataset; and selecting a subset of features from the second labelled dataset used for validating the trained model by comparing predicted results for the trained model and the labels; repeating the steps with a different subset of features to generate another trained model until results are positive in terms of precision or accuracy.