Abstract:
Methods and apparatuses for iterative parameter estimation are described. The iterative parameter estimation includes performing a first estimation of a first portion of a signal to obtain first parameters of the portion of the signal, wherein the signal contains no known data symbols. The first portion of the signal is demodulated using the first parameters to recover data symbols. The demodulated first portion of the signal is checked to confirm correct demodulation of the first portion of the signal. A second estimation of the first portion of the signal is performed using the recovered data symbols to obtain second parameters of the first portion of the signal. Then, a second portion of the signal is demodulated using the second parameters when the first portion of the signal is correctly demodulated.
Abstract:
A change in a time derivative of a branch's received power is determined (402). In response to the absolute value of the received power exceeding (404) a predetermined threshold, a second branch is switched to (406). The determination (402) of the rate of change of the received power can include use of a received-signal-strength indicator. The threshold can be a function of modulation and coding. A rapid change in time derivative of the received power indicates that the branch will soon become frequency selective and that, therefore, the second branch should be switched to (406) in order to avoid the negative affects of the frequency selectivity of the first branch.
Abstract:
An encoded signal that comprises a plurality of received encoded signal values is received by using an error correction decoding technique to generate a plurality of decoded signals and one more decoded error detection signals. A correction value is generated that is representative of how much correction was performed by the error correction decoding technique to generate the plurality of decoded signals. The one or more decoded error detection signals are used to generate an error detection result. The decoded information signals are then alternatively accepted or rejected as a function of the error detection result and a comparison of the correction value with a threshold value.
Abstract:
In a heterogeneous network cell deployment a mobile terminal may need to receive control data transmissions from a macro node at the same time as a pico node is transmitting user data for the mobile terminal, using the same frequency or set of frequencies. This can result in a problematic interference situation. According to several embodiments of the present invention, at least one of two general approaches is used to mitigate the interference situation described above. In a first approach, the pico node's transmission power is reduced in some time intervals, thereby reducing the interference to a level where reception from the macro node is possible. In a second approach, which may be combined with the first approach in some cases, relevant data (e.g. control information) transmitted from the macro node is provided by the pico node, either alone or in combination with the macro node (i.e. simultaneously to the macro node during the same protected transmission time intervals).
Abstract:
A method of a first wireless communication device adapted to perform device-to-device communication with a third device is disclosed, wherein a second device causes interference to the device-to-device communication. The method comprises determining an interference criterion associated with the second wireless communication device, and transmitting an interference management request message related to the interference criterion to a network node. A corresponding method of a network node adapted to provide assistance of device-to-device communication is also disclosed. The method comprises receiving the interference management request message related to the interference criterion from the first wireless communication device, and transmitting an interference control message to at least one of the first wireless communication device, the second wireless communication device, and the third wireless communication device. Corresponding computer program product, arrangements, wireless communication device and network node are also disclosed.
Abstract:
Data Block Transmission with Variable Retransmission Feedback Time For communicating data between a transmitter (10) and a receiver (14), wireless transmission of data blocks is implemented on the basis a retransmission protocol with variable value of a feedback time. The feedback time defines a time interval between transmission of one of the data blocks (22) and transmission of a feedback message (23) indicating whether the data block (22) was successfully received. The transmitter (10) or the receiver (14) determines the value of the feedback time. Depending on the determined value of the feedback time, the transmitter (10) controls transmission of the data block (22) to the receiver and/or the receiver (14) controls reception of the data block (22) at the receiver (14). The transmitter (10) may for example be a base station of a mobile network, and the receiver (14) may be a terminal device connected to the mobile network. (Fig. 1)
Abstract:
A method in a first radio communication node (110, 310, 710, 1010) and a first radio communication node (110, 310, 710, 1010) for scheduling a data transmission in a first time frame using one of a plurality of modulation and coding schemes are provided. The data transmission is to be transmitted between the first radio communication node (110, 310, 710, 1010) and a second radio communication node (120, 320, 720, 1020). The first radio communication node (110, 310, 710, 1010) obtains (301, 701, 1001, 1401) a first indication about channel quality for the first time frame. The first radio communication node (110, 310, 710, 1010) obtains (302, 702, 1002, 1402) second indication about a possible upcoming transmission failure. The possible upcoming transmission failure relates to a feedback information to be transmitted in a second time frame. The feedback information is associated with the data transmission in the first time frame. The first radio communication node (110, 310, 710, 1010) selects (303, 703, 1003, 1403) a modulation and coding scheme out of said plurality of modulation and coding schemes based on the first indication and the second indication. Next, the first radio communication node (110, 310, 710, 1010) schedules (304, 704, 1004, 1404) the data transmission using the selected modulation and coding scheme.
Abstract:
An Orthogonal Frequency Division Multiplexing (OFDM) symbol for transmission from a non-reference transceiver to a user equipment (UE) in a mobile communication system is generated by ascertaining a general timing for transmission of OFDM symbols, wherein the general timing is associated with a reference transceiver. A UE timing relative to the general timing is ascertained. An initial resource element (RE) value is adjusted by a pre-compensating amount to obtain a pre-compensated RE value, wherein the pre-compensating amount is based on the UE timing relative to the general timing. The pre-compensated resource element value is supplied as one of a plurality of values to be transmitted. An IFFT is performed on the plurality of values to be transmitted to obtain pre-compensated initial signal information. A cyclic prefix is appended to the pre-compensated initial signal information to form an OFDM symbol for transmission from the non-reference transceiver to the UE.
Abstract:
The disclosure relates to a Complex Intermediate Frequency (CIF)-based receiver adapted to process a received signal comprising a signal component at a desired frequency and a signal component as an image frequency. The CIF-based receiver determines the power of the received signal by calibrating the receiver to minimize the power of the signal component at the image frequency that interferes with the signal component at the desired frequency, introduces signal leakage from the image frequency to intentionally degrade the quality of the signal component at the desired frequency, and determines the power of the signal component at the image frequency based on the amount of degradation.
Abstract:
A communication device has a controller operatively connected to at least a first transceiver and a second transceiver, wherein the first transceiver receives signals on one or more channels within a first frequency band and the second transceiver transmits signals on one or more channels within a second frequency band, wherein the first and second frequency bands are adjacent one another so that each of the first and second frequency bands has an adjacent border and a nonadjacent border. Coexistence between the first and second transceivers is achieved by adjusting receive and/or transmit filters associated with the transceivers to create a guard band that is located more in the first frequency band if the second transceiver is using frequencies close to its adjacent border, and a guard band that is more in the second frequency band if the second transceiver is not using frequencies close to its adjacent border.