Abstract:
Described herein is a filtration medium comprising a substrate, wherein the substrate comprises a thermolysis product of (i) a carbon substrate having a surface of CO x E y , wherein E is selected from at least one of S, Se, and Te; and wherein x and y are greater than 0; and (ii) a metal salt; and methods of removing chloramine from aqueous solutions.
Abstract:
A process for limiting the growth of microorganisms comprises (a) providing an antimicrobial agent comprising fine-nanoscale gold on a support medium comprising nanoparticulate titania, the fine-nanoscale gold having been deposited on the support medium by physical vapor deposition; and (b) contacting at least one microorganism with the antimicrobial agent.
Abstract:
A method of patterning a substrate that includes applying an organic composition having an ionizable substituent in a predetermined pattern onto a substrate; and performing ion-exchange between the ionizable substituent and an ionic species.
Abstract:
Methods and apparatus to provide Log-Amp-detected radar sea clutter voltage modeled by a polynomial, such as a cubic polynomial, and using that model as a basis for sea clutter reduction filtering. In an exemplary embodiment, a navigational radar includes an STC filter design based on the cubic sea clutter modeling.
Abstract:
This invention relates to non-precious metal fuel cell cathode catalysts, fuel cells that contain these catalysts, and methods of making the same. The fuel cell cathode catalysts are highly nitrogenated carbon materials that can contain a transition metal. The highly nitrogenated carbon materials can be supported on a nanoparticle substrate.
Abstract:
The present invention provides technology for controlling, or tuning, the catalytic activity of gold provided upon nanoporous supports such as those derived from nanoparticulate, crystalline titania. In some aspects of practice, the surface of nanoparticulate media incorporated into a catalyst system of the present invention is provided with chemical modifications of the surface that dramatically suppress the ability of the resultant catalyst system to oxidize hydrogen. Yet, the system still readily oxidizes CO. In other words, by selecting and/or altering the nanoparticulate surface via the principles of the present invention, PROX catalysts are readily made from materials including catalytically active gold and nanoparticulate media. Additionally, the nanoparticulate support also may be optionally thermally treated to further enhance selectivity for CO oxidation with respect to hydrogen. Such thermal treatments may occur before or after chemical modification, but desirably occur prior to depositing catalytically active gold onto the support incorporating the nanoparticles.