一种核反应堆负荷跟踪的实现方法

    公开(公告)号:CN107945889A

    公开(公告)日:2018-04-20

    申请号:CN201711214357.X

    申请日:2017-11-28

    Abstract: 本发明公开了一种核反应堆负荷跟踪的实现方法,该方法采用两套相对独立的控制棒组用于核反应堆的反应性和轴向功率偏移功率控制;两套控制棒组分别为T棒组和K棒组,其中,K棒组由多束黑棒组成,T棒组包括多束灰棒和黑棒;在核反应堆的基负荷运行期间,仅有K棒组插入堆芯,且K棒组的插入深度大于或等于咬量加上24步;在核反应堆的负荷跟踪运行期间,所述T棒组和K棒组均插入堆芯中。该方法在基负荷运行期间只需要一组控制棒插入堆芯,该方法避免了基负荷运行时过多控制棒插入堆芯所导致的燃料燃耗不均匀、控制棒注量升高、控制棒吸收体燃耗较多、控制棒驱动机构负荷增大等缺点。

    基于卡尔曼滤波的铑自给能探测器信号延迟消除方法

    公开(公告)号:CN103871524B

    公开(公告)日:2016-08-10

    申请号:CN201210538898.9

    申请日:2012-12-13

    Abstract: 本发明涉及核反应堆芯测量系统探测器信号处理技术领域,具体公开了一种基于卡尔曼滤波的铑自给能探测器信号延迟消除方法。该方法的具体步骤为:1、建立铑与中子的核反应模型;2、建立卡尔曼滤波模型;3、利用卡尔曼滤波对铑自给能中子探测器电流信号作延迟消除;3.1、获得卡尔曼滤波算法中的系统过程白噪声方差矩阵Q和系统观测白噪声方差矩阵为R;3.2、采集铑自给能探测器电流值,进行模数转换后,利用卡尔曼滤波对铑自给能中子探测器电流信号作延迟消除;本发明所述的一种基于卡尔曼滤波的铑自给能探测器信号延迟消除方法,可以对测量电流信号进行降噪处理,可以保证响应时间足够小的情况下,噪声放大倍数抑制在1~8倍。

    基于H2/H∞混合滤波的钒自给能探测器信号延迟消除方法

    公开(公告)号:CN104882180A

    公开(公告)日:2015-09-02

    申请号:CN201510166352.9

    申请日:2015-04-09

    CPC classification number: G21C17/108 G01T3/00 G06F19/70

    Abstract: 本发明公开了基于H2/H∞混合滤波消除钒自给能探测器信号延迟的方法,包括依次进行的以下步骤:步骤1、建立钒与热中子的核反应模型;步骤2、采用直接变换建立核反应模型对应的离散状态方程;步骤3、确定钒自给能探测器电流的瞬时响应份额;步骤4、利用H2/H∞混合滤波器对钒自给能探测器电流信号作延迟消除。本发明应用时能对钒自给能中子探测器的电流信号进行延迟消除处理,并能有效抑制噪声,使得钒自给能中子探测器在反应堆瞬态工况时也能正常使用,且由于该方法仅要求测量误差通道所对应的滤波误差方差有一个上界,从而当输入信号是一个具有有限能量的不确定信号时,钒自给能中子探测器也能正常应用。

    基于卡尔曼滤波的铑自给能探测器信号延迟消除方法

    公开(公告)号:CN103871525A

    公开(公告)日:2014-06-18

    申请号:CN201210539051.2

    申请日:2012-12-13

    Abstract: 本发明涉及核反应堆芯测量系统探测器信号处理技术领域,具体公开了一种基于卡尔曼滤波的铑自给能探测器信号延迟消除方法。该方法的具体步骤为:1、建立铑与中子的核反应模型;2、建立卡尔曼滤波模型;3、利用卡尔曼滤波对铑自给能中子探测器电流信号作延迟消除;3.1、获得卡尔曼滤波算法中的系统过程白噪声方差矩阵Q和系统观测白噪声方差矩阵为R;3.2、采集铑自给能探测器电流值,进行模数转换后,利用卡尔曼滤波对铑自给能中子探测器电流信号作延迟消除;本发明所述的一种基于卡尔曼滤波的铑自给能探测器信号延迟消除方法,可以对测量电流信号进行降噪处理,可以保证响应时间足够小的情况下,噪声放大倍数抑制在1~8倍。

    一种基于MOX燃料组件的反应堆首循环无源启动方法

    公开(公告)号:CN119673492A

    公开(公告)日:2025-03-21

    申请号:CN202411626435.7

    申请日:2024-11-14

    Abstract: 本发明属于核反应堆技术领域,具体涉及一种基于MOX燃料组件的反应堆首循环无源启动方法。包括以下步骤:步骤1:反应堆装料开始后,先将MOX燃料组件按一定顺序,装入到堆芯外围靠近堆外高灵敏度探测器位置;步骤2:堆芯燃料组件装料顺序按斜对角蛇形方式依次装入;步骤3:对于MOX燃料组件装载在堆芯内区的堆芯方案,将步骤1中装入在高灵敏度探测器附近的MOX燃料组件的堆芯位置A08、R08、H01、H15移至堆芯方案中MOX燃料组件的位置为堆芯位置C08、N08、H03、H13,然后在步骤1中靠近高灵敏度探测器附近在位置装入堆芯方案中确定的燃料组件。有益效果:本发明通过在首循环堆芯装载MOX燃料组件和布置堆外高灵敏度探测器,可实现首循环反应堆无盲区无源启动。

    一种基于多层粗网改进的准三维运输方法及系统、介质

    公开(公告)号:CN119558113A

    公开(公告)日:2025-03-04

    申请号:CN202411401270.3

    申请日:2024-10-09

    Abstract: 本发明涉及核反应堆堆芯设计和安全技术领域,具体而言,涉及一种基于多层粗网改进的准三维运输方法及系统、介质,将所要模拟的压水堆三维堆芯划分若干输运层,在每个输运层中径向划分多个细网;在压水堆每个输运层中再划分若干差分层;在每个差分层中径向划分多个粗网,并在每个粗网上建立粗网有限差分模型;在每个差分层中采用菱形差分假设中子角通量密度线性变化;在每个输运层上建立差分层中心面和交界面的面中子标通量密度修正的新的准三维输运模型。本发明方法可扩展准三维输运计算的轴向高度,减少准三维输运计算的建模层数,节省内存、提高计算效率,可用于压水堆数值反应堆模拟计算及工程应用。

Patent Agency Ranking