-
公开(公告)号:CN101337183A
公开(公告)日:2009-01-07
申请号:CN200810136943.1
申请日:2008-08-15
Applicant: 哈尔滨工业大学
Abstract: 直接醇类燃料电池阴极催化剂的制备方法,它涉及燃料电池阴极用催化剂的制备方法。本发明解决了现有Pt催化剂颗粒大、粒径分散不均匀和利用率低等问题。方法如下:一、将过渡金属化合物与Pt化合物分散到多元醇中,调节pH值;二、还原,得胶体溶液;三、将经酸化的碳载体均匀分散在多元醇中,得碳载体浆料;四、将胶体溶液均匀分散到碳载体浆料中,调节pH值,洗涤,真空干燥后即可。本发明产品颗粒尺寸为1~3nm,电化学比表面积为60~110m2/g。本发明具有颗粒细小、粒径分散窄、催化剂利用率高及电流密度显著提高优点,并且减少了贵金属催化剂的担载量、降低了生产成本。
-
公开(公告)号:CN101185900A
公开(公告)日:2008-05-28
申请号:CN200710144805.3
申请日:2007-12-12
Applicant: 哈尔滨工业大学
Abstract: 直接醇类燃料电池阳极催化剂的制备方法,它涉及一种阳极用催化剂的制备方法。本发明为了解决现有Pt催化剂价格昂贵,资源有限的问题。本发明的制备方法如下:一、将经过高温石墨化处理后的多壁碳纳米管在臭氧处理器中,恒温处理,然后加入到有机小分子醇与超纯水的混合溶液中;二、将化合物前驱体,加入到步骤一制备的溶液中,调节pH值;三、将步骤二的溶液在反应釜中还原;四、将产物洗涤,在真空条件下干燥。本发明的催化剂颗粒尺寸为3~5nm,具有60~100m2/g的电化学比表面积,在相同电位的条件下本发明的催化剂比相同工艺制备的Pt-Ni/MCNTs催化剂电流密度可提高2~5mA/cm2,本发明减少了贵金属的用量,节约了资源,降低了燃料电池的生产成本。
-
公开(公告)号:CN1661837A
公开(公告)日:2005-08-31
申请号:CN200510009699.9
申请日:2005-02-01
Applicant: 哈尔滨工业大学
Abstract: 本发明公开一种直接甲醇燃料电池用阳极Pt-Ru/C催化剂的制备方法。直接甲醇燃料电池用催化剂的制备方法包括如下步骤:将碳载体置于压力为0.1~1.5MPa的水蒸气中处理3~12小时,取出真空干燥;将上述处理后的碳载体加入去离子水和异丙醇溶液中,分散均匀;将Pt和Ru的前驱体加入分散均匀的含碳浆液中,使Pt和Ru的前驱体均匀分散在碳载体上,Pt和Ru的前驱体分别为H2PtCl6和RuCl3;将分散均匀的碳载体、Pt和Ru前驱体浆液用缓冲溶液调节pH值为7~10;将获得的浆液升温到70~90℃,加入还原剂,还原1~5小时即制得Pt-Ru/C催化剂;本发明制备出的催化剂颗粒较小(为3-5nm),且分散均匀。
-
公开(公告)号:CN119488931B
公开(公告)日:2025-05-16
申请号:CN202411632602.9
申请日:2024-11-15
Applicant: 哈尔滨工业大学
Abstract: 一种具有轴向氯修饰的FeAl双原子催化剂及其制备方法和应用,它涉及原子级分散催化剂、其制备方法及其应用。本发明提供的具有轴向氯修饰的FeAl双原子催化剂是由氮掺杂碳作为主体,FeAlClN6活性位点分布在主体中;FeAlClN6的结构为:Fe、Al均与四个N原子配位,其中的两个N为与Fe、Al同时配位的桥式N原子;FeAlN6的八个原子在同一平面内,且Al在垂直方向上还与Cl配位。制法:将碳基体、铁源、铝源、氮源分散于溶剂中搅拌,再蒸干,将固体在惰性气氛下热处理,得到催化剂。以该催化剂组装燃料电池的最高功率密度达1339mW/cm2,经过三万圈循环老化后半波电位保持率98%,可应用于污染物降解、化学固氮固碳、催化能源转化等电催化领域。
-
公开(公告)号:CN119627133A
公开(公告)日:2025-03-14
申请号:CN202411785535.4
申请日:2024-12-05
Applicant: 哈尔滨工业大学
Abstract: 一种半金属掺杂Fe基单原子催化剂及其制备方法和应用,它涉及Fe基单原子催化剂及其制法和应用,它是要解决铁基非贵金属单原子催化剂在氧还原反应中活性和稳定性不足的问题。本发明的催化剂是Fe和Sb两种金属的原子形成原子对并嵌入碳载体中,表现为Fe=2N=Sb配位结构,同时Sb原子轴向上有一个羟基。制法:将ZIF‑8进行热处理得到N掺杂多孔碳材料,将其与Fe盐、Sb盐溶液混匀、蒸干后热活化,得到催化剂。制成的电极在0.1M HClO4溶液中老化3万圈后半波电位仅下降18mV。组装的质子交换膜燃料电池,在氢氧和氢空条件下的功率密度分别为1098.3、613.41mW/cm2,可用于燃料电池领域。
-
公开(公告)号:CN119447516A
公开(公告)日:2025-02-14
申请号:CN202411655958.4
申请日:2024-11-19
Applicant: 哈尔滨工业大学
Abstract: 一种自动压机用热电池电解质的制备方法,属于热电池技术领域。所述方法为:将氧化镁和熔盐混合,进行煅烧;将得到的电解质块气流粉碎成电解质半成品;将电解质半成品进行充分搅拌混合,进行抽真空处理,抽至一定真空度后取出;将得到的半成品进行二次煅烧,随后进行气流粉碎,得到电解质成品。通过对电解质粉末进行二次均匀化处理,使得制备的电解质粉末粒度集中度高,流动性好,适用于自动压机超大超薄电解质片的压制,提高了热电池的比能量和比功率,拓宽了热电池的使用场景。
-
公开(公告)号:CN118281314A
公开(公告)日:2024-07-02
申请号:CN202410410357.0
申请日:2024-04-07
Applicant: 哈尔滨工业大学
IPC: H01M10/0565 , H01M10/054 , H01M50/403 , H01M50/457 , H01M50/454 , H01M50/44 , H01M50/451 , H01M50/411 , H01M50/414
Abstract: 本发明公开了一种具有承载‑离子导电双功能的锌离子电池准固态电解质的制备方法,所述方法包括如下步骤:步骤一:将锌盐完全溶解于离子液体中,得到混合液,向混合液中加入环氧树脂和固化剂,得到固化前驱液;步骤二:以超薄玻璃纤维为基材,完全浸润步骤一配置的固化前驱液;步骤三:将玻璃纤维预浸物真空脱泡后预固化;步骤四:将预固化后的玻璃纤维预浸物先在60~80℃下保温2~4h,然后在90~120℃下保温1~3h,随后在60~80℃下过夜,得到锌离子电池准固态电解质。本发明制备的准固态电解质专门适用于结构储能锌离子电池,制备方法简单高效可靠,不需要使用操作复杂的精密仪器,易于规模推广应用。
-
公开(公告)号:CN116565240B
公开(公告)日:2024-03-19
申请号:CN202310529490.3
申请日:2023-05-11
Applicant: 哈尔滨工业大学 , 江苏源氢新能源科技股份有限公司
Abstract: 一种稀土金属Ln掺杂NC载体担载的PtLn合金催化剂及其制备方法与应用(Ln为La、Ce),属于电催化领域。通过在ZIF‑8中掺杂Ln源并碳化得到Ln掺杂氮碳材料LnOx‑NC;而后以其为载体,利用微波‑多元醇还原法将氯铂酸还原为PtNPs并担载在LnOx‑NC上,抽滤干燥后得到Pt/LnOx‑NC粉末;最后将Pt/LnOx‑NC退火,研磨后得到PtLn/LnOx‑NC合金催化剂。具有以下优点和有益效果:稀土金属Ln掺杂氮碳LnOx‑NC载体中的Ln元素以原子级的形式和氧化物LnOx存在;载体中以原子级存在的Ln也能够在退火过程中与PtNPs形成PtLn合金结构,PtLn结构能有效调控Pt纳米颗粒对反应中间体的吸附能力从而调节催化剂活性。
-
公开(公告)号:CN115763845B
公开(公告)日:2024-03-19
申请号:CN202211456797.7
申请日:2022-11-21
Applicant: 哈尔滨工业大学
IPC: H01M4/90 , H01M4/86 , C25B11/091 , C25B11/067 , C25B1/04 , B82Y40/00 , B82Y30/00 , B01J27/24
Abstract: 一种铬基无机物耦合过渡金属氮掺杂碳催化剂的制备方法,属于电催化领域。所述方法以配置金属M‑联吡啶溶液为起点,然后在上述溶液中依次加入氯化钠、铬盐和有机铵盐并搅拌使固体溶解后蒸干得到混合粉末;然后通过退火‑去模板‑酸洗‑抽滤‑干燥得到催化剂。具有以下优点:通过熔融盐模板法将铬盐无机物载体引入到M‑N‑C原子级分散催化剂中取代常规碳载体,该方法适用于多种金属‑氮共掺杂碳催化剂(如Fe、Cu、Ni等);催化剂为相互连接纳米晶体组成的超薄的二维片状,可有效提升传质能力;铬基无机盐引入可提升法拉第效率、催化活性以及在高电流、长时间工作条件下的耐久性,明显优于商业铂碳催化剂以及过渡金属氮掺杂碳。
-
公开(公告)号:CN117254042A
公开(公告)日:2023-12-19
申请号:CN202311334431.7
申请日:2023-10-16
Applicant: 哈尔滨工业大学
IPC: H01M4/88 , H01M4/92 , H01M8/1004
Abstract: 一种质子交换膜燃料电池无裂纹膜电极的制备方法,它涉及质子交换膜燃料电池膜电极的制备方法。它是要解决现有的直涂法制备质子交换膜燃料电池膜电极时催化层时存在的质子交换膜溶胀严重、催化层龟裂、三相反应界面数量少而影响电池性能及耐久性的技术问题。本方法:一、制备氧、氟双掺杂改性碳载体;二、制备高载量Pt/C催化剂;三、配置免消泡催化剂浆料;四、催化层的涂覆与干燥,得到质子交换膜燃料电池无裂纹催化层。本发明制备的催化层无龟裂且均匀、平整,在燃料电池中,催化层的峰值功率密度达到1.42W/cm2,在额定电压0.65V处,功率密度能够达到1.23W/cm2。可用于质子交换膜燃料电池领域。
-
-
-
-
-
-
-
-
-