Abstract:
The PBS is suitable for use in projection systems and displays. A polarizing beam splitter (PBS) contains at least one prism having at least one major surface and having a refractive index of at least about 1.6 and the birefringent film disposed on the major surface of the prism. The present invention provides a unique birefringent multi-layer film having at least a first material and a second material. After uniaxial stretching, the film exhibits a refractive index difference of less than about 0.15 units in the stretched direction.
Abstract:
A nanocomposite is provided including silica nanoparticles and a dispersant dispersed in a curable resin or a curing agent, where the nanocomposite contains less than 2% by weight solvent. The silica nanoparticles include nonspherical silica nanoparticles and/or spherical pyrogenic silica nanoparticles. A composite is also provided including from about 4 to 70 weight percent of silica nanoparticles, and a dispersant, dispersed in a cured resin, and a filler embedded in the cured resin. Optionally, the composite further contains a curing agent. Further, a method of preparing a nanoparticle-containing curable resin system is provided including mixing from 10 to 70 weight percent of aggregated silica nanoparticles with a curable resin and a dispersant to form a mixture. The mixture contains less than 2% by weight solvent. The method also includes milling the mixture in an immersion mill containing milling media to form a milled resin system including silica nanoparticles dispersed in the curable resin.
Abstract:
Methods of preparing hybrid aerogels are described. The methods include co-condensing a metal oxide precursor and an organo-functional metal oxide precursor, and crosslinking the organo-functional groups with an ethylenically-unsaturated crosslink agent. Thermal energy and actinic radiation crosslinking are described. Both supercritical aerogel and xerogels, including hydrophobic supercritical aerogel and xerogels, are described. Aerogel articles, including flexible aerogel articles are also disclosed.
Abstract:
A nanocomposite is provided including silica nanoparticles and a dispersant dispersed in a curable resin or a curing agent, where the nanocomposite contains less than 2% by weight solvent. The silica nanoparticles include nonspherical silica nanoparticles and/or spherical pyrogenic silica nanoparticles. A composite is also provided including from about 4 to 70 weight percent of silica nanoparticles, and a dispersant, dispersed in a cured resin, and a filler embedded in the cured resin. Optionally, the composite further contains a curing agent. Further, a method of preparing a nanoparticle-containing curable resin system is provided including mixing from 10 to 70 weight percent of aggregated silica nanoparticles with a curable resin and a dispersant to form a mixture. The mixture contains less than 2% by weight solvent. The method also includes milling the mixture in an immersion mill containing milling media to form a milled resin system including silica nanoparticles dispersed in the curable resin.
Abstract:
A nanocomposite is provided including silica nanoparticles and a dispersant dispersed in a curable resin or a curing agent, where the nanocomposite contains less than 2% by weight solvent. The silica nanoparticles include nonspherical silica nanoparticles and/or spherical pyrogenic silica nanoparticles. A composite is also provided including from about 4 to 70 weight percent of silica nanoparticles, and a dispersant, dispersed in a cured resin, and a filler embedded in the cured resin. Optionally, the composite further contains a curing agent. Further, a method of preparing a nanoparticle-containing curable resin system is provided including mixing from 10 to 70 weight percent of aggregated silica nanoparticles with a curable resin and a dispersant to form a mixture. The mixture contains less than 2% by weight solvent. The method also includes milling the mixture in an immersion mill containing milling media to form a milled resin system including silica nanoparticles dispersed in the curable resin.
Abstract:
A nanocomposite is provided including silica nanoparticles and a dispersant dispersed in a curable resin or a curing agent, where the nanocomposite contains less than 2% by weight solvent. The silica nanoparticles include nonspherical silica nanoparticles and/or spherical pyrogenic silica nanoparticles. A composite is also provided including from about 4 to 70 weight percent of silica nanoparticles, and a dispersant, dispersed in a cured resin, and a filler embedded in the cured resin. Optionally, the composite further contains a curing agent. Further, a method of preparing a nanoparticle-containing curable resin system is provided including mixing from 10 to 70 weight percent of aggregated silica nanoparticles with a curable resin and a dispersant to form a mixture. The mixture contains less than 2% by weight solvent. The method also includes milling the mixture in an immersion mill containing milling media to form a milled resin system including silica nanoparticles dispersed in the curable resin.
Abstract:
Methods of compounding nanoparticles with a resin, e.g., a curable resin and one or more surface modifying agents are described. The methods use wet milling technology, including both continuous and batch milling processes, and can be used to functionalize the nanoparticles and disperse the functionalized nanoparticles into the resin system in a single process. Methods of compounding curable resin systems containing reactive diluents are also disclosed.