Abstract:
A copolymer that includes first divalent units having a pendent ultraviolet absorbing group, second divalent units represented by formula (I):, and third divalent units represented by formula (II):. Each R1 is independently hydrogen or methyl; R2 is a straight-chain or branched alkyl having from 1 to 20 carbon atoms; V is O or NH; W is alkylene having from 1 to 10 carbon atoms; and each R′ is independently alkyl having from 1 to 6 carbon atoms. Compositions including the copolymer, for example, pressure sensitive adhesive compositions are disclosed. Articles including the compositions are disclosed. For example, an assembly including a barrier film and the pressure sensitive adhesive composition is also disclosed.
Abstract:
An optical adhesive including a viscoelastic or elastomeric adhesive layer and a cured polymer layer immediately adjacent the viscoelastic or elastomeric adhesive layer is described. The viscoelastic or elastomeric adhesive layer a refractive index less than 1.570 and the cured polymer layer has a refractive index of at least 1.570. An interface between the viscoelastic or elastomeric adhesive layer and the cured polymer layer is structured. The cured polymer layer has a storage modulus of at least 2000 MPa at 20° C. and a glass transition temperature of no more than 65° C.
Abstract:
A composition is disclosed. The composition comprises at least one polymeric colorant having a polymer component with a colorant component covalently bound thereto, a medicament, and a liquid vehicle. The at least one colorant component does not react directly or indirectly with the medicament. Methods of using the polymeric colorants, including a method for the preparation of skin as a site for a surgical procedure and a method of treating a medical condition, are also provided.
Abstract:
A thermoplastic copolymer that includes a first divalent unit having a pendent ultraviolet absorbing group and a second divalent unit that is fluorinated. A fluoropolymer composition including the thermoplastic copolymer is also disclosed.
Abstract:
An article includes a patterned substrate including a substrate surface with an inorganic electro-conductive trace adjacent thereto (wherein the substrate and the inorganic material of the trace each has an index of refraction), and a layer including a polymerized acrylate matrix adjacent to at least a portion of the surface of the substrate and the inorganic electro-conductive trace, wherein the layer has an index of refraction that is within ±10% of the average of the indices of refraction of the substrate and the inorganic material of the trace.
Abstract:
Methods of making transfer films to form bridged nanostructures are disclosed. The methods include applying a thermally stable backfill layer to a structured surface of a sacrificial template layer.
Abstract:
A thermoplastic copolymer that includes a first divalent unit having a pendent ultraviolet absorbing group and a second divalent unit that is fluorinated. A fluoropolymer composition including the thermoplastic copolymer is also disclosed.
Abstract:
Optical films are described having a polymerized microstructured surface that comprises the reaction product of a polymerizable resin composition comprising at least one polymerizable ethylenically unsaturated triphenyl monomer. Also described are certain triphenyl(meth)acrylate monomers and polymerizable resin compositions.
Abstract:
Microstructured films such as brightness enhancing films. The microstructured film has a polymerized structure comprising the reaction product of the polymerizable resin composition (e.g. having a refractive index of at least 1.58). The cured nanocomposite (e.g. structure) can exhibit improved crack resistance. In some embodiments, the flexibility is expressed in terms of a cylindrical mandrel bend test property (e.g. a mandrel size to failure of less than 6 mm or a mandrel size to failure according to the equation D=1000(T/0.025−T) wherein T is the thickness in millimeters of a (e.g. preformed base layer). In other embodiments, the flexibility is expressed in terms of a tensile and elongation property (e.g. a tensile strength at break of at least 25 MPa and an elongation at break of at least 1.75%).