Abstract:
Retroreflective articles comprise a substrate and a bar code provided on the substrate. The bar code comprises at least one human-readable information which provides framing information and a machine-readable information which provides variable information. The human-readable information is visible under a first condition and invisible under a second condition, and the machine-readable information is invisible under the first condition and visible under the second condition.
Abstract:
The disclosure provides microstructured articles and methods useful for detecting an analyte in a sample. The articles include microwell arrays. The articles can be used with an optical system component in methods to detect or characterize an analyte.
Abstract:
Optical bodies, for example optical films, are formed with inorganic fibers embedded within a polymer matrix. In some embodiments, the refractive indices of the inorganic fibers and the polymer matrix are matched. There need be no bonding agent between the fibers and the polymer matrix. The inorganic fibers may be glass fibers, ceramic fibers, or glass-ceramic fibers. A structure may be provided on the surface of the optical body, for example to provide optical power to light passing through the optical body. The body may be formed using a continuous process, with a continuous layer of the inorganic fibers being embedded within the matrix which is then solidified.
Abstract:
A lightguide functioning as a luminaire. The luminaire includes at least one solid state light source, such as an LED, and a lightguide configured to receive light from the solid state light source. Light from the light source is coupled into the lightguide and transported within it by total internal reflection until the light exits the lightguide. A shape of the lightguide causes and directs extraction of the light, and can also be used to create a particular pattern of the extracted light. Such shapes include linear wedges and twisted wedges. Optical films can be included on the light input and output surfaces of the lightguide.
Abstract:
Disclosed herein is a microstructured tool having a microstructured layer on a base layer. The microstructured layer is made from an aromatic acrylate polymer that is a reaction product of an oligomer and a radiation curable diluent, the aromatic acrylate polymer having a ratio of aromatic to aliphatic carbons of less than about 1:1, the oligomer comprising a multifunctional acrylate monomer or an acrylate functionalized oligomer. The microstructured layer has a microstructured surface having one or more features. The base layer may be metal, polymer, ceramic, or glass. Also disclosed herein is a method of making the microstructured tool using laser ablation. The microstructured tool may be used to make articles suitable for use in optical applications.
Abstract:
A polarizing film is made of multilayer polarizing fibers embedded within a matrix. The fibers are formed with layers of at least a first and a second polymer material. Layers of the first polymer material are disposed between layers of the second polymer material. At least one of the first and second polymer materials is birefringent. Where the fibers are non-circular in cross-section, the cross-section can be oriented within the polarizer.