Abstract:
There is provided an article a binder resin layer comprising an aliphatic polyurethane polymer comprising a plurality of soft segments, and a plurality of hard segments, where the soft segments comprise poly(alkoxy) polyol, and where the poly(alkoxy) polyol is essentially free of crosslinker; and a plurality of microspheres partially embedded and adhered to a first major surface of the binder resin layer, wherein the specific chemical identities and relative amounts of the segments and moieties of the aliphatic polyurethane polymer are sufficient to impart a glass transition temperature of 10° C. or less in the article and a storage modulus in the article that changes less than 15 MPa from 25° C. to 175° C.
Abstract:
There is provided an article comprising at least a first surface having a first binder layer selected from at least one of linear resins and resins having low cross link densities, where the first binder layer has a first major surface opposite a second major surface; and a plurality of microspheres at least partially embedded in the first major surface of the first binder layer. There is also provided an article comprising a first surface having a first binder layer selected from at least one of linear resins and resins having low cross link densities; and a plurality of microspheres at least partially embedded a the first major surface of the first binder layer, where for at least a portion of the first major surface the plurality of microspheres covers 30% to 50% of that portion, and the microspheres are substantially uniformly spaced.
Abstract:
There is provided an article having a compliant article where the compliant article comprises an polymer layer and a first layer disposed along a first major surface of the polymer layer; and a plurality of microspheres partially embedded and adhered to a major surface of the first layer opposite the surface that is disposed along the first major surface of the polymer layer, wherein the article has a compression modulus of less than or equal to 0.5 MPa. There is also provided an article having a compliant article where the compliant article comprises a polymer layer; and a plurality of microspheres partially embedded and adhered to a major surface of the compliant article, where the article has a compression modulus of less than or equal to 0.5 MPa, and further where the article is a decorative article.
Abstract:
There is provided an article a binder resin layer comprising an aliphatic polyurethane polymer comprising a plurality of soft segments, and a plurality of hard segments, where the soft segments comprise poly(alkoxy) polyol, and where the poly(alkoxy) polyol is essentially free of crosslinker; and a plurality of microspheres partially embedded and adhered to a first major surface of the binder resin layer, wherein the specific chemical identities and relative amounts of the segments and moieties of the aliphatic polyurethane polymer are sufficient to impart a glass transition temperature of 10° C. or less in the article and a storage modulus in the article that changes less than 15 MPa from 25° C. to 175° C.
Abstract:
Described herein is a construction comprising a microsphere layer comprising a plurality of microspheres wherein the microspheres comprise glass, ceramic, and combinations thereof; a first polymer layer comprising a first polymer, wherein the plurality of microspheres is partially embedded in the first polymer layer; and an undercoat layer therebetween the microsphere layer and first polymer layer, wherein the undercoat layer comprises a plurality of silica nanoparticles. Also disclosed herein are articles comprising the construction and methods of making thereof. In one embodiment, the constructions of the present disclosure have good anti-soiling and abrasion resistant properties.
Abstract:
There is provided an article comprising at least a first surface having a first binder layer selected from at least one of linear resins and resins having low cross link densities, where the first binder layer has a first major surface opposite a second major surface; and a plurality of microspheres at least partially embedded in the first major surface of the first binder layer. For at least a portion of the first major surface, the plurality of micro spheres may cover 30% to 50% of that portion, and the microspheres may be substantially uniformly spaced.