Abstract:
A method of applying a pattern to a nonplanar surface with a radius of curvature. A stamp with a major surface has a relief pattern of pattern elements extending away from a base surface. Each pattern element has a stamping surface with a lateral dimension of 0 to 5 microns. An ink applied on the stamping surface includes a functionalizing molecule with a functional group that chemically binds to the nonplanar surface. The stamp is positioned to initiate rolling contact between the nonplanar surface and the major surface of the stamp. The stamping surface of the pattern elements contacts the nonplanar surface to form a self-assembled monolayer of the functionalizing material on the nonplanar surface and impart the arrangement of pattern elements. A relative position of the stamping surface is controlled with respect to the nonplanar surface while the major surface of the stamp contacts the nonplanar surface.
Abstract:
A method of applying a pattern to a nonplanar surface. A stamp has a major surface with pattern elements having a lateral dimension of greater than 0 and less than about 5 microns. The major surface of the stamp has a functionalizing molecule with a functional group selected to chemically bind to the nonplanar surface. The stamp is positioned to initiate rolling contact with the nonplanar surface, and contacts the nonplanar surface to form a self-assembled monolayer (SAM) of the functionalizing material thereon and impart the arrangement of pattern elements thereto. The major surface of the stamp is translated with respect to the nonplanar surface such that: a contact force is controlled at an interface between the stamping surfaces and the nonplanar surface, and the contact pressure at the interface is allowed to vary while the stamping surfaces and the nonplanar surface are in contact with each other.
Abstract:
Coating apparatuses and methods are provided for dispensing coatings with various shapes. The coating apparatus includes a coating die body including a cavity and an opening on a dispensing side thereof. One or more movable components are disposed on the dispensing side of the die body to define at least a portion of a dispensing slot adjacent the opening of the cavity. The one or more movable components are movable with respect to the opening to allow a width of the dispensing slot along a cross direction to be dynamically adjustable.
Abstract:
A process for applying a coating material onto a substrate as a non-uniform discontinuous pattern of coating material, the method including the present disclosure describes a method of applying a coating material onto a substrate, including providing a first distribution manifold having a cavity and a multiplicity of first dispensing outlets in fluid communication with the cavity, creating relative motion between a substrate and the dispensing outlets in a first direction; dispensing a first coating material from the dispensing outlets while maintaining the relative motion and translating the multiplicity of dispensing outlets in a second direction non-parallel to the first direction, and varying a rate of dispensing of the first coating material in a predetermined fashion to form a discontinuous pattern of the first coating material on a major surface of the substrate. Useful non-uniformly patterned coated articles can be prepared using the process.
Abstract:
A viscoelastic adhesive composition is provided, wherein at a dispensing temperature of between 35°C and 120°C, the viscoelastic adhesive composition can be discretely dispensed and has a tan delta of at least 1 as determined by dynamic mechanical analysis at a frequency of 1Hz and a complex viscosity of less than 5 x 10 3 Pascal-sec at a complex viscosity of less than 5 x 10 3 Pascal-sec at a frequency of about 10 radians s- 1 . Such adhesives have been found useful in forming optical assemblies for producing diplay panels used in a variety of electronic devices.
Abstract:
An apparatus (20) for steering a web (22), including a web path having at least one steering roller (24) and an exit roller (26), each having a mount; wherein the steering roller(s) (26) each have an axis of rotation and wherein the mounts for the steering roller(s) (26) can pivot those axes with a total of two degrees of freedom. An array (30) comprising a plurality of sensors (30a) for monitoring the position of the web (22) is present connected to a controller so as to determine the position and angular orientation of the web (22). The controller adjusts the pivot(s) of the mount(s) so as to control the angular orientation and the lateral position of the web (22) at a particular point along the web path.
Abstract:
An optical combiner includes a first layer with a periodic arrangement of structures of a material with a first refractive index. A second layer overlies the structures on the first layer, and the second layer includes a material with a second refractive index. A difference between the first refractive index and the second refractive index, measured at 587.5 nm, is less than 1.5. The periodic arrangement of structures is configured such that the optical combiner produces, for an input signal incident on the first layer from air at an oblique elevation angle of greater than 20°, an output signal with three reflection peaks, each reflection peak having an average reflection of greater than 50% within a ± 3° range of the elevation angle.