Abstract:
A method of making patterned structured solid surfaces is disclosed that includes filling a structured template with backfill material to produce a structured transfer film and laminating the structured transfer film to a receptor substrate. The receptor substrate comprises a patterned adhesion promotion layer. The template layer is capable of being removed from the backfill layer while leaving at least a portion of the structured surface of the backfill layer substantially intact. The backfill layer can include at least two different materials, one of which can be an adhesion promotion layer. In some embodiments the backfill layer includes a silsesquioxane such as polyvinyl silsesquioxane. The structured transfer film is a stable intermediate that can be covered temporarily with a release liner for storage and handling.
Abstract:
Organic light emitting diode (OLED) devices are disclosed that include a first layer; a backfill layer having a structured first side and a second side; a planarization layer having a structured first side and a second side; and a second layer; wherein the second side of the backfill layer is coincident with and adjacent to the first layer, the second side of the planarization layer is coincident with and adjacent to the second layer, the structured first side of the backfill layer and structured first side of the planarization layer form a structured interface, the refractive index of the backfill layer is index matched to the first layer, and the refractive index of the planarization layer is index matched to the second layer.
Abstract:
Organic light emitting diode (OLED) devices are disclosed that include a first layer; a backfill layer having a structured first side and a second side; a planarization layer having a structured first side and a second side; and a second layer; wherein the second side of the backfill layer is coincident with and adjacent to the first layer, the second side of the planarization layer is coincident with and adjacent to the second layer, the structured first side of the backfill layer and structured first side of the planarization layer form a structured interface, the refractive index of the backfill layer is index matched to the first layer, and the refractive index of the planarization layer is index matched to the second layer.
Abstract:
Transfer films, articles made therewith, and methods of making and using transfer films to form an electrical stack are disclosed. The transfer films may include a plurality of co-extensive electrical protolayers forming an electrical protolayer stack, at least selected or each electrical protolayer independently comprising at least 25 wt % sacrificial material and a thermally stable material and having a uniform thickness of less than 25 micrometers. The transfer films may include a plurality of co-extensive electrical protolayers forming an electrical protolayer stack, at least selected or each protolayer independently exhibiting a complex viscosity of between 103 and 104 Poise at a shear rate of 100/s when heated to a temperature between its Tg and Tdec.
Abstract:
Transfer films, articles made therewith, and methods of making and using transfer films to form an electrical stack are disclosed. The transfer films (100) may include a plurality of co-extensive electrical protolayers (22, 23, 24) forming an electrical protolayer stack (20), at least selected or each electrical protolayer independently comprising at least 25 wt % sacrificial material and a thermally stable material and having a uniform thickness of less than 25 micrometers. The transfer films may include a plurality of co-extensive electrical protolayers forming an electrical protolayer stack, at least selected or each protolayer independently exhibiting a complex viscosity of between 103 and 104 Poise at a shear rate of 100/s when heated to a temperature between its Tg and Tdec.
Abstract:
Pillar delivery films for vacuum insulated glass units are disclosed. The delivery films include a support film or pocket tape, a sacrificial material on the support film, and a plurality of pillars. The pillars are at least partially embedded in the sacrificial material or formed within sacrificial material molds, and the sacrificial material is capable of being removed while leaving the pillars substantially intact. Methods of transferring pillars to a substrate using the pillar delivery films are disclosed. In order to make an insulated glass unit, the delivery films are laminated to a receptor such as a glass pane, and the support film and sacrificial material are removed to leave the pillars remaining on the glass.
Abstract:
A transfer film is provided which includes a sacrificial template layer having a first surface and a second surface opposite the first surface, wherein the second surface comprises a non-planar structured surface and a thermally stable backfill layer applied to the second surface of the sacrificial template layer, wherein the backfill layer has a structured surface corresponding with and applied to the non-planar structured surface of the sacrificial template layer. The sacrificial template layer comprises oriented dimensionally anisotropic inorganic nanomaterials and is capable of being removed from the backfill layer while leaving the structured surface of the backfill layer and the oriented dimensionally anisotropic inorganic nanomaterials substantially intact.
Abstract:
A transfer tape is disclosed that includes a carrier, a template layer having a first surface applied to the carrier and having a second surface opposite the first surface, wherein the second surface comprises a non-planar structured surface, a release coating disposed upon the non-planar structured surface of the template layer, and a backfill layer disposed upon and conforming to the non-planar structured surface of the release coating. In some embodiments, the backfill layer includes a silsesquioxane such as polyvinyl silsesquioxane. The disclosed transfer tape can be used to transfer replicated structures to a receptor substrate.
Abstract:
A transfer film is provided which includes a sacrificial template layer having a first surface and a second surface opposite the first surface, wherein the second surface comprises a non-planar structured surface and a thermally stable backfill layer applied to the second surface of the sacrificial template layer, wherein the backfill layer has a structured surface corresponding with and applied to the non-planar structured surface of the sacrificial template layer. The sacrificial template layer comprises oriented dimensionally anisotropic inorganic nanomaterials and is capable of being removed from the backfill layer while leaving the structured surface of the backfill layer and the oriented dimensionally anisotropic inorganic nanomaterials substantially intact.