Abstract:
A porous polymer web layer of ultrafine fibers, and a non-porous film layer made of a material that is swellable and allows conduction of electrolyte ions in an electrolyte solution, are integrally provided on one surface or both surfaces of a positive electrode or a negative electrode, and a short circuit between the positive electrode and the negative electrode by the inorganic particles contained in polymer web is prevented although a battery is overheated. The electrode assembly includes: a positive electrode; a negative electrode; and a separator that separates the positive electrode and the negative electrode. The separator comprises: a first non-porous polymer film layer; and a porous polymer web layer that is formed on the first non-porous polymer film layer and is made of ultrafine fibers of a mixture of a heat-resistant polymer and inorganic particles or a mixture of a heat-resistant polymer, a swellable polymer, and inorganic particles.
Abstract:
Provided is an antiviral filter medium. An antiviral filter medium according to one embodiment of the present invention includes a first member provided with an antiviral coating layer formed of fibers and including, on part or all of the outer surface of the fibers, an antiviral fusion protein in which an antiviral motif is bound to an adhesive protein. Accordingly, the antiviral filter medium exhibits antiviral properties, is excellent in filtration efficiency and ventilation amount (or flow rate), and has low pressure loss. In addition, the antiviral filter medium is characterized in that the coating layer exhibiting antiviral properties retains adhesiveness for a long period of time after being attached to the surface. Moreover, the antiviral filter medium can retain antiviral activity for a long time without loss of the antiviral activity due to external conditions during production, storage, and use.
Abstract:
A method for manufacturing a fiber assembly for providing a binding surface to a bio-substance is provided. A fiber assembly for providing a binding surface to a bio-substance according to an embodiment of the present invention is manufactured by a method comprising the steps of: (1) preparing a fiber assembly in which a plurality of fibers is accumulated; and (2) performing modification to provide the fiber surface with a carboxyl group reactive to an amine group present in a bio-substance. According to the method, a bio-substance can be easily introduced at a high content into the fiber assembly. In addition, bio-substances that are conjugated therebetween and adsorbed through physical adsorption, etc. are remarkably reduced in the introduction procedure of bio-substances, whereby bio-substances can be availed with high precision and reliability in applications employing bio-substances. Furthermore, applications employing bio-substances can undergo minimal property variations attributed to the bio-substances as detachment of the bio-substances is minimized or prevented. Accordingly, the bio-substances fixed on the surface of the fiber assembly according to the present invention can find a broad spectrum of applications in various fields including the material engineering, bio engineering, medical fields, and so on.
Abstract:
A cell culture apparatus is provided. A cell culture apparatus according to one exemplary embodiment of the present invention comprises: a cell culture part comprising an accommodation space in which a plurality of supports for cell culture are disposed; a medium supply part for storing a predetermined amount of medium to be supplied to the cell culture part, and maintaining a predetermined carbon dioxide concentration of the medium stored therein by using carbon dioxide introduced from the outside through a gas supply port; and a pump, which interconnects the cell culture part and the medium supply part so as to circulate, in the cell culture part, a medium stored in the medium supply part.
Abstract:
A cell culture device is provided. A cell culture device according to an exemplary embodiment of the present invention comprises: a housing which has a plurality of through-holes formed through at least one surface thereof to allow carbon dioxide to be introduced thereinto from the outside and includes an inner space filled with a medium for culturing cells; a plurality of supporters which are arranged in the inner space in multiple steps while being spaced at an interval from each other so as to culture cells and are provided in a plate-shape having a predetermined area; and a porous member which is attached to one surface of the housing so as to cover the plurality of through-holes, prevents the medium filled in the inner space from leaking to the outside, and allows carbon dioxide to be introduced into the inner space from the outside.
Abstract:
A filter medium is provided. According to one embodiment of the present invention, the filter medium is implemented by including: a porous second support and a nanofiber web which are sequentially stacked on each of an upper portion and a lower portion of a first support; and a channel through which a filtrate filtered in the nanofiber web flows in a direction of the first support, wherein the first support, the second support, and the nanofiber web satisfy predetermined conditions on a basis weight and a thickness of each layer. In a water treatment operation of the filter medium, the shape, structural deformation, and damage of the filter medium can be minimized, excellent filtration efficiency can be implemented, and a channel can be smoothly secured, thereby securing high flux. In addition, even at high pressure applied during backwashing, the filter medium has an extended use period due to excellent durability of the filter medium. Accordingly, the filter medium can be variously applied in various water treatment fields.
Abstract:
Provided are a thin electromagnetic shielding sheet and an electronic device having the same. The thin electromagnetic shielding sheet includes: a pressure-sensitive adhesive tape including a fiber-accumulating type substrate, formed by accumulation of a plurality of fibers and having a plurality of pores, and a metal coating layer on an outer circumferential surface of each of the plurality of fibers, and electrically conductive adhesive layers formed on both surfaces of the fiber-accumulating type substrate, and made of an electrically conductive adhesive material filled in the plurality of pores and electrically connected by an applied pressure; a metal layer which is adhered to the electrically conductive adhesive layer on one surface of the pressure-sensitive adhesive tape to shield electromagnetic waves; and an insulating layer formed on the metal layer.
Abstract:
Provided is a method of manufacturing a separator for a fuel cell comprising: accumulating fibers obtained by electrospinning a spinning solution in which a polymer and a solvent are mixed to obtain a first support having first pores in a three-dimensional network structure; electrospraying a spraying solution in which a first ion exchange resin and a solvent are mixed to spray droplets of the first ion exchange resin on the first support body; accumulating fibers obtained by electrospinning a spinning solution in which a polymer and a solvent are mixed on the first support to form a second support having second pores in a three-dimensional network structure; and electrospraying a spraying solution in which a second ion exchange resin and a solvent are mixed to spray droplets of the second ion exchange resin on the second support body and fill the second ion exchange resin in the second pores.
Abstract:
Provided is a flexible electromagnetic wave shielding material. An electromagnetic wave shielding material according to an embodiment of the present invention is implemented to include a conductive fiber web including a conductive composite fiber including a metal shell part covering an outside of a fiber part such that the conductive composite fiber forms multiple pores; and a first conductive component provided in at least some of the pores. The electromagnetic wave shielding material is so excellent in flexibility, elasticity, and creasing/recovery that the electromagnetic wave shielding material may be freely changed in shape, and can be brought in complete contact with a surface where the electromagnetic wave shielding material is intended to be disposed even if the surface has a curved shape such as an uneven portion or a stepped portion, thus exhibiting excellent electromagnetic wave shielding performance. Also, it is possible to prevent deterioration of the electromagnetic wave shielding performance even with various shape changes. Furthermore, even if parts are provided in a narrow area at a high density, the electromagnetic wave shielding material can be brought into complete contact with the mounted parts by overcoming a tight space between the parts and a stepped portion. Thus, the present invention can be easily employed for a light, thin, short, and small or flexible electronic device.
Abstract:
Provided is a method of forming a filter module. The method includes: forming a non-pore ion-exchange membrane including: preparing a mixed solution of a polymer material and an ion-exchange material; and electrospraying the mixed solution to obtain the non-pore ion-exchange membrane; and interposing the non-pore ion-exchange membrane between a first polymer nanofiber web and a second polymer nanofiber web to form the filter module.