Abstract:
An electronic device provides data to present a user interface with a plurality of user interface objects, including a control user interface object at a first location. The control user interface object is configured to control a parameter. The device receives an input that corresponds to an interaction with the control user interface object. While receiving the input that corresponds to the interaction with the control user interface object, the device provides data to move the control user interface object, in accordance with the input, from the first location to a second location. The device also provides first sound information to provide a sound output with characteristics that are different from the parameter controlled by the control user interface object and that change with movement of the control user interface object from the first location to the second location.
Abstract:
An electronic device provides data to present a user interface with a plurality of user interface objects. A current focus is on a first user interface object of the plurality of user interface objects. The device receives an input. In response, the device provides data to move the current focus from the first user interface object to a second user interface object based on a direction and/or magnitude of the input, and provides sound information to provide a sound output concurrently with the movement of the current focus from the first user interface object to the second user interface object. A pitch of the sound output is based on a size of the first user interface object, a type of the first user interface object, a size of the second user interface object, and/or a type of the second user interface object.
Abstract:
An audio system is described that includes one or more speaker arrays that emit sound corresponding to one or more pieces of sound program content into associated zones within a listening area. Using parameters of the audio system (e.g., locations of the speaker arrays and the audio sources), the zones, the users, the pieces of sound program content, and the listening area, one or more beam pattern attributes may be generated. The beam pattern attributes define a set of beams that are used to generate audio beams for channels of sound program content to be played in each zone. The beam pattern attributes may be updated as changes are detected within the listening environment. By adapting to these changing conditions, the audio system is capable of reproducing sound that accurately represents each piece of sound program content in various zones.
Abstract:
An electronic device displays a user interface in a first display state. The device detects a first portion of a gesture on a touch-sensitive surface, including detecting intensity of a respective contact of the gesture. In response to detecting the first portion of the gesture, the device displays an intermediate display state between the first display state and a second display state. In response to detecting the end of the gesture: if intensity of the respective contact had reached a predefined intensity threshold prior to the end of the gesture, the device displays the second display state; otherwise, the device redisplays the first display state. After displaying an animated transition between a first display state and a second state, the device, optionally, detects an increase of the contact intensity. In response, the device displays a continuation of the animation in accordance with the increasing intensity of the respective contact.
Abstract:
A device displays a user interface that includes a content area and a deletion control. The device detects an input that includes a contact on the deletion control. In response, the device deletes content in the content area based on a duration and intensity of the contact, including: when the contact was maintained for a first time period without the intensity increasing above a threshold, deleting a first-type of sub-units of the content at a rate that does not vary based on the intensity; when the contact was maintained for a second time period without the intensity increasing above the threshold, deleting a second-type of sub-units of the content at a rate that does not vary based on the intensity; and when the intensity of the contact increased above the threshold, deleting sub-units of the content at a rate that varies based on the characteristic intensity of the contact.
Abstract:
An electronic device with a display, a touch-sensitive surface and one or more intensity sensors displays content. While a focus selector is over the content, the device detects a gesture on the touch-sensitive surface, the gesture including a first contact on the touch-sensitive surface and movement of the first contact across the touch-sensitive surface that corresponds to movement of the focus selector on the display. In response to detecting the gesture, when the contact has an intensity below a selection intensity threshold, the device scrolls the content on the display in accordance with the movement of the focus selector on the display without selecting the content. In response to detecting the gesture, when the contact has an intensity above the selection intensity threshold, the device selects at least a portion of the content in accordance with the movement of the focus selector over the content.
Abstract:
An electronic device with a display, touch-sensitive surface and one or more sensors to detect intensity of contacts with the touch-sensitive surface displays a first user interface object and detects first movement of the contact that corresponds to movement of a focus selector toward the first user interface object. In response to detecting the first movement, the device moves the focus selector to the first user interface object; and determines an intensity of the contact. After detecting the first movement, the device detects second movement of the contact. In response to detecting the second movement of the contact, when the contact meets selection criteria based on an intensity of the contact, the device moves the focus selector and the first user interface object; and when the contact does not meet the selection criteria, the device moves the focus selector without moving the first user interface object.
Abstract:
An electronic device with a touch-sensitive surface, a display, and one or more sensors to detect intensity of contacts with the touch-sensitive surface displays a graphical object inside of a frame on the display, and detects a gesture. Detecting the gesture includes: detecting a contact on the touch-sensitive surface while a focus selector is over the graphical object, and detecting movement of the contact across the touch-sensitive surface. In response to detecting the gesture: in accordance with a determination that the contact meets predefined intensity criteria, the device removes the graphical object from the frame; and in accordance with a determination that the contact does not meet the predefined intensity criteria, the device adjusts an appearance of the graphical object inside of the frame.
Abstract:
An electronic device displays a user interface in a first display state. The device detects a first portion of a gesture on a touch-sensitive surface, including detecting intensity of a respective contact of the gesture. In response to detecting the first portion of the gesture, the device displays an intermediate display state between the first display state and a second display state. In response to detecting the end of the gesture: if intensity of the respective contact had reached a predefined intensity threshold prior to the end of the gesture, the device displays the second display state; otherwise, the device redisplays the first display state. After displaying an animated transition between a first display state and a second state, the device, optionally, detects an increase of the contact intensity. In response, the device displays a continuation of the animation in accordance with the increasing intensity of the respective contact.
Abstract:
At a device with a touch-sensitive surface, a display, and one or more tactile output generators, a button configuration user interface that includes a plurality of tactile output settings for a button is displayed on the display, wherein the button is available on the device in a plurality of different contexts to cause performance of a respective operation in response to an input of a first type detected on the button. While a respective tactile output setting for the button is selected in the button configuration user interface, in response to detecting a first input of a first type on the button, a respective tactile output that corresponds to the respective tactile output setting is generated without causing performance of the respective operation.