Abstract:
Methods for operating a portable electronic device to conduct mobile payment transactions are provided. The electronic device may include near field communications circuitry having a transmitter, a receiver, and a field detector for detecting a field from a merchant terminal. The receiver is typically idle. The receiver may be activated when the field detector detects that the electronic device is within the field of the merchant terminal. The transmitter may then be used to perform link establishment and data transfer. If the payment transaction fails for any reason, one or more hardware settings on the electronic device may be adjusted to help increase the chance of a successful transaction in a subsequent payment attempt. Another transaction may be attempted when the user moves the device out of the field and back into the field or may be performed automatically as long as the device is still within the field.
Abstract:
A device implementing a system for NFC communication includes a processor configured to receive, from an other device, pulse signals for detecting proximity of the device with the other device. The processor is further configured to determine an interval at which the pulse signals are received from the other device. The processor is further configured to determine a time when the other device is expected to transmit a subsequent pulse signal based at least in part on the determined interval. The processor is further configured to transmit a signal to the other device based on the determined time when the other device is expected to transmit the subsequent pulse signal.
Abstract:
Methods performed by a first sink device, a source device, or a second sink device. The first sink device is connected to a source device via a first communication link and a second sink device via a second communication link, wherein the second sink device is configured to eavesdrop on communications between the first sink device and the source device on the first communication link. The methods include determining an occurrence of a trigger event and modifying an operation of at least one of the first sink device, the second sink device or the source device based at least on the trigger event occurring.
Abstract:
Accessory devices are described herein. An accessory device may include a receptacle for receiving an electronic device. The accessory device may include a case that covers the housing of the electronic device, or a folio that additionally includes a cover can conceal the display of the electronic device. Accessory devices described herein further include wireless circuitry used to communicate with wireless circuitry in the electronic device. The wireless circuitry can be used for various functions and features. For instance, the wireless circuitry in the accessory device can respond to authentication requests from the electronic device, and/or to send authentication requests to the electronic device. Further, the wireless circuitry in the accessory device can send information to the electronic device. Such information may include properties of the accessory device, or information stored on the accessory device that is presented on a display of the electronic device.
Abstract:
Embodiments are disclosed for terahertz spectroscopy and imaging in dynamic environments. In an embodiment, a method comprises using a sensor of an electronic device to determine an orientation of the electronic device. A transmitter of the electronic device emits an electromagnetic (EM) wave in a terahertz (THz) frequency band into a dynamic environment according to a power duty cycle that is determined at least in part by the orientation. A receiver of the electronic device receives a reflected EM wave from the environment. A spectral response of the reflected EM wave is determined that includes absorption spectra that is indicative of the transmission medium in the environment. The absorption spectra are compared with known absorption spectra of target transmission mediums. Based on the comparing, a particular target transmission medium is identified as being the transmission medium in the environment, and a concentration level of the identified target transmission medium in the environment is determined.
Abstract:
A device implementing a system for NFC communication with a second device includes an antenna and a processor configured to transmit a pulse signal for detection of another device within proximity of the device, and to detect, in conjunction with transmission of the pulse signal, that a first value of a measurement parameter of the antenna satisfies an initial detection factor. The processor is further configured, in response to the detection, to set a confirmation detection factor for the measurement parameter of the antenna based at least in part on the first value of the measurement parameter of the antenna, to transmit a confirmation pulse signal, and to initiate a second polling for reception of data from the other device when a second value of the measurement parameter of the antenna detected in conjunction with transmission of the confirmation pulse signal satisfies the confirmation detection factor.
Abstract:
A device in an adaptive channel access system may include a processor that is configured initiate access of a channel, and perform a first jammer detection on the channel. The processor is configured to, when a jamming device is detected on the channel, access the channel with a channel occupancy time set to a first duration of time. The processor is configured to, when no jamming devices are detected: access the channel with the channel occupancy time set to the second duration of time that is greater than the first duration, while accessing the channel with the channel occupancy time set to the second duration of time, perform a second jammer detection on the channel, and when the jamming device is detected, cease to access the channel prior to the expiration of the second duration of time, otherwise continue to access the channel without re-initiating access of the channel.
Abstract:
Systems, methods, and devices are provided for compensating for distortion of a contactless communication channel. The electronic device may include a radio frequency system that itself includes antenna to transmit and receive data using near-field communication (NFC) and an NFC signal processing circuitry. The NFC signal processing circuitry may receive an NFC signal via a communication channel formed between the electronic device and another electronic device and may determine a baseband reference waveform associated with the electromagnetic NFC signal and may determine an error between a portion of the electromagnetic NFC signal and the baseband reference waveform. Furthermore, the NFC signal processing circuitry may determine whether the error is outside of an acceptable error threshold range and, in response to the error being outside of the acceptable error threshold range, train a filter response of the NFC signal processing circuitry to estimate the communication channel.
Abstract:
A device implementing a system for NFC communication includes a processor configured to receive, from an other device, pulse signals for detecting proximity of the device with the other device. The processor is further configured to determine an interval at which the pulse signals are received from the other device. The processor is further configured to determine a time when the other device is expected to transmit a subsequent pulse signal based at least in part on the determined interval. The processor is further configured to transmit a signal to the other device based on the determined time when the other device is expected to transmit the subsequent pulse signal.
Abstract:
Systems, methods, and devices are provided for compensating for distortion of a contactless communication channel. The electronic device may include a radio frequency system that itself includes antenna to transmit and receive data using near-field communication (NFC) and an NFC signal processing circuitry. The NFC signal processing circuitry may receive an NFC signal via a communication channel formed between the electronic device and another electronic device and may determine a baseband reference waveform associated with the electromagnetic NFC signal and may determine an error between a portion of the electromagnetic NFC signal and the baseband reference waveform. Furthermore, the NFC signal processing circuitry may determine whether the error is outside of an acceptable error threshold range and, in response to the error being outside of the acceptable error threshold range, train a filter response of the NFC signal processing circuitry to estimate the communication channel.