Abstract:
This disclosure relates to performing cell re-selection while in an inactive state in a cellular communication system. A wireless device may establish a radio resource control connection with a cellular base station. The wireless device may receive an indication to enter a radio resource control inactive state. The wireless device may perform cell re-selection while in the radio resource control inactive state. Cells that are in the current radio access network notification area of the wireless device may be prioritized over cells that are not in the current radio access network notification area of the wireless device when performing cell re-selection while in the radio resource control inactive state.
Abstract:
This disclosure relates to techniques for performing radio resource control procedures for remote wireless devices in a wireless communication system. A remote wireless device may transmit a radio resource control message that includes information configured to be relayed to a cellular base station to a relay wireless device, which may relay the information to the cellular base station. The cellular base station may also transmit a radio resource control message that includes information configured to be relayed to the remote wireless device to the relay wireless device, which may relay the information to the remote wireless device.
Abstract:
A user equipment (UE) includes first and second subscriber identity modules (SIMs), possibly subscribed to different carriers. When the first SIM is in a connected state and the second SIM is in an idle state, the UE may need to periodically tune away a radio from a first frequency used for communication under the first SIM to a second frequency used for idle mode activity under the second SIM. The UE may provide to the network of the first SIM the second SIMs traffic activity pattern and/or serving frequency so that the network may provide coordinated configuration and/or scheduling for the UE device, e.g., in order to make the action of tuning away (and tuning back) the radio more efficient and/or to decrease the network impact of such radio tune aways (e.g., to decrease wasted uplink scheduling and wasted downlink transmissions for the first SIM).
Abstract:
Apparatuses, systems, and methods for using an assistance information framework to perform fast carrier aggregation and dual connectivity configuration. A wireless device may provide assistance information for determining a carrier aggregation or dual connectivity configuration to a cellular base station. The assistance information may be provided while establishing a radio resource control connection. The assistance information may include either or both of carrier aggregation or dual connectivity preference information for the wireless device or service data amount information for the wireless device. The cellular base station may select a carrier aggregation or dual connectivity configuration for the wireless device based on the assistance information, and may provide configuration information for the selected configuration to the wireless device.
Abstract:
This disclosure relates to techniques for handling voice and data under uplink limited conditions in a wireless communication system. A wireless device and a base station may establish a wireless communication link. Transmission time interval bundling (TTI-B) may be enabled for uplink communications between the wireless device and the base station. It may be determined that the wireless device is experiencing uplink limited conditions. One or more rules prioritizing a first type of data over a second type of data for uplink communications may be enabled based on TTI-B being enabled and the wireless device experiencing uplink limited conditions.
Abstract:
In some implementations, radio access technology (RAT) signals can be monitored and used to synchronize an internal clock of a mobile device to a network system clock without registering the mobile device to the network. In some implementations, a RAT processor can be configured to receive RAT signals and to prevent transmission of RAT signals. In some implementations, the internal clock can be associated with a GNSS processor and can be used to calculate a location of the mobile device. In some implementations, a RAT processor that is configured for a particular radio access technology can be configured to monitor signals associated with another radio access technology when synchronizing the internal clock. In some implementations, the RAT processor can monitor signals in response to a power event. The power event can be associated with powering a display of the mobile device.
Abstract:
Apparatuses, systems, and methods for user equipment (UE) devices to determine that it does not have cellular service and perform one or more searches for a mobile country code (MCC). The searches may include searches based on cellular modes, radio access technologies (RATs), and/or cellular bands. The UE may determine the MCC based on results of the one or more searches and perform a targeted service acquisition search based on, and limited by, the MCC. The MCC may be associated with one or more cellular modes, RATs, and/or cellular bands via a data structure that maps the MCC to the one or more cellular modes, RATs, and/or cellular bands. The targeted service acquisition search may include at least one RAT and one or more cellular bands within the at least one RAT associated with the MCC.
Abstract:
Methods, apparatuses and computer readable media are described that adjust radio resource control connection states between a mobile wireless device and a wireless network following determination that a set of inactivity trigger conditions is met. Time periods between successive data messages and/or signaling messages transmitted to and/or received from a wireless access network are measured. When a prolonged period of data inactivity and/or signaling activity is determined, the mobile wireless device re-establishes an existing radio resource control connection to the wireless access network or releases the radio resource control connection to the wireless access network and transitions to an idle state.
Abstract:
A wireless communication system is presented in which user equipment (UE) performs non-intra-frequency (NIF) cell reselection. The NIF cell reselection process can: detect, on a discontinues reception (DRX) cycle, whether a NIF for a second cell has passed a second reselection threshold; perform, on the DRX cycle, additional checks or measurements to determine whether a higher priority NIF for a third cell has passed a third reselection threshold; and continue a cell reselection process for the second cell and the third cell. The NIF cell reselection techniques can help ensure that the UE reselects to higher priority cells without expending an unnecessary amount power.
Abstract:
Improving transmission control protocol (TCP) uplink performance of a wireless user equipment (UE) device which multiplexes radio resources between multiple radio access technologies (RATs). Radio control may be provided to a radio resource control (RRC) entity that operates according to a first RAT at a first time. The first RAT may utilize TCP packet-switched (PS) communications. As a second time, radio control may be provided to an RRC entity that operates according to a second RAT which utilizes circuit-switched communications in order to check for paging messages. Radio control by the first RAT's RRC entity may be suspended while radio control is provided to the second RAT's RRC entity. An indication that radio control by the first RAT's RRC entity is suspended may be provided to a TCP entity that operates according to the first RAT. The TCP entity may suspend an uplink retransmission timer in response to the indication.