Abstract:
A heat dissipation structure for mobile device includes an element holding member, which has a holding portion and a cooling chip set on the holding portion. The holding portion has a first side and an opposite second side; and the cooling chip has a cold surface and an opposite hot surface. The cooling chip is set on the holding portion with the cold surface and the hot surface being flush with the first and the second side of the holding portion, respectively. The heat dissipation structure can be mounted in a mobile device to quickly cool heat-producing electronic elements in the mobile device, so that any produced heat is guided away from the mobile device without accumulating therein.
Abstract:
An internal frame structure with heat insulation effect and an electronic apparatus with the internal frame structure. The internal frame includes a main body and a frame unit. A heat insulation layer is formed between the main body and the frame unit and positioned on at least two opposite sides of the main body. The heat insulation layer has a first side connected with the main body and a second side connected with the frame unit. The heat insulation layer serves to insulate the heat of the main body from being transferred to the frame unit.
Abstract:
An apparatus body heat dissipation device includes an apparatus case, at least one plate body and at least one drive member. The apparatus case has at least one first opening and at least one second opening and a receiving space. The plate body is disposed in the receiving space. The drive member serves to drive the plate body to move within the receiving space to produce an air convection effect between the interior of the apparatus case and the ambient surrounding air of the apparatus case so that the air convection in the limited space of the apparatus body can be effectively enhanced to greatly enhance the heat dissipation efficiency.
Abstract:
A fan vibration damping structure and a fan with the vibration damping structure. The fan vibration damping structure includes a bearing cup, a first bearing, a second bearing, a third bearing, an elastic member and at least one oil seal. The bearing cup has an internal receiving space and a bearing hole in communication with each other. The first, second and third bearings and the elastic member are disposed in the receiving space. A high-viscosity-coefficient oil is filled in the receiving space. The fan vibration damping structure is applied to the fan to greatly reduce vibration of the fan in operation.
Abstract:
A water-cooling device includes a pump case, at least one winding, a driver and a heat exchange member. The pump case has a top section, a bottom section and a peripheral section together defining a pump chamber. The winding is disposed on a circuit board. The circuit board is disposed on any of the top section, the bottom section and the peripheral section. The driver is disposed in the pump chamber. At least one magnetic member is disposed on the driver in a position corresponding to the winding, whereby the magnetic member can induce and magnetize the winding on the circuit board. The heat exchange member is connected with the pump case. By means of the structural design of the water-cooling device, the volume of the water-cooling device is greatly minified and the structure of the water-cooling device is thinned.
Abstract:
An internal frame structure with heat isolation effect and an electronic apparatus with the internal frame structure. The internal frame is applied to the electronic apparatus. The internal frame includes a main body and a frame unit. The frame unit includes an inner layer, an outer layer and a heat isolation layer positioned between the inner layer and the outer layer. The inner layer is adjacently connected with the main body. The outer layer is positioned on an outermost side of the frame unit. The heat isolation layer serves to isolate the heat of the main body from being transferred to the outer layer of the frame unit.
Abstract:
An internal frame structure with heat isolation effect and an electronic apparatus with the internal frame structure. The internal frame is applied to the electronic apparatus. The internal frame includes a main body and a frame unit. The frame unit includes an inner layer, an outer layer and a heat isolation layer positioned between the inner layer and the outer layer. The inner layer is adjacently connected with the main body. The outer layer is positioned on an outermost side of the frame unit. The heat isolation layer serves to isolate the heat of the main body from being transferred to the outer layer of the frame unit.
Abstract:
A fan vibration damping structure and a fan with the vibration damping structure. The fan vibration damping structure includes a bearing cup, a first bearing, a second bearing, a third bearing, an elastic member and at least one oil seal. The bearing cup has an internal receiving space and a bearing hole in communication with each other. The first, second and third bearings and the elastic member are disposed in the receiving space. A high-viscosity-coefficient oil is filled in the receiving space. The fan vibration damping structure is applied to the fan to greatly reduce vibration of the fan in operation.
Abstract:
A heat dissipation structure of intelligent wearable device includes a wearable mobile device main body and a hard wearable body. The wearable mobile device main body has a receiving space for receiving therein multiple electronic components. The electronic components have at least one heat source. The hard wearable body is made of thermosetting polymer material or thermoplastic polymer material. The hard wearable body has a chamber having a capillary structure. A working fluid is contained in the chamber. The hard wearable body has a heat absorption section and a heat dissipation section. The hard wearable body is connected with the wearable mobile device main body. The heat absorption section is in contact with the electronic components or the heat source to conduct heat to the heat dissipation section to dissipate the heat at a remote end. Accordingly, the heat dissipation efficiency of the intelligent wearable device is greatly enhanced.
Abstract:
A heat dissipation structure for a wearable mobile device comprises a wearable mobile device and a flexible belt. The wearable mobile device has a receiving space which receives a plurality of electronic components having at least one heat source. The flexible belt is made of rubber or silicone and has a cavity which has at least one wick structure and a working liquid. A wall of the cavity protrudes to form a supporting portion. The flexible belt defines a heat absorbing portion and at least one heat dissipating portion. Two ends of the heat absorbing portion form the heat dissipating portion. The heat absorbing portion contacts the electronic components or the heat source to conduct heat. The present invention provides a heat dissipation structure using a vapor-liquid circulating chamber and structure disposed in a flexible belt for a wearable mobile device to enhance the whole heat dissipation efficiency.