Abstract:
The invention relates to a propylene homopolymer or copolymer having a comonomer in the copolymer selected from ethylene, C4-C20-alpha olefin, said propylene homopolymer or copolymer being free of phthalic compound. It further relates to a long-chain branched propylene homopolymer or copolymer (b-PP) having a comonomer in the copolymer selected from ethylene, C4-C20-alpha olefins, said long-chain branched propylene homopolymer or copolymer (b-PP) being free of phthalic compound. As well as their production processes and uses.
Abstract:
A process for the preparation of a copolymer of propylene and ethylene comprising polymerizing propylene and ethylene in the gas phase in the presence of a solid particulate catalyst free from an external carrier comprising: (i) a symmetrical complex of formula (I), wherein M is zirconium or hafnium; each X is a sigma ligand; L is a divalent bridge selected from —R′2C—, —R′2C—CR′2—, —R′2Si—, —R′2Si—SiR′2—, —R′2Ge—, wherein each R′ is independently a hydrogen atom, C1-C20-alkyl, tri(C1-C20-alkyl)silyl, C6-C20-aryl, C7-C20-arylalkyl or C7-C20-alkylaryl; R2 is a C1-C20 hydrocarbyl radical; m is 2 to 5; R9 is a H or C1-C20 hydrocarbyl radical; R7 is a hydrogen atom or a C1-10 hydrocarbyl radical; n is 0 to 3; R1 is a C1-C20 hydrocarbyl radical and optionally two adjacent R1 groups taken together can form a further mono or multicyclic ring condensed to Ph ring optionally substituted by one or two groups R4; and R4 is a C1-C10 alkyl radical; and (ii) a cocatalyst, preferably comprising an organometallic compound of a Group 13 metal; wherein the xylene soluble fraction of the propylene ethylene copolymer has an ethylene content of at least 10 wt % and an intrinsic viscosity of at least 1.2 dl/g.
Abstract:
A heterophasic propylene ethylene copolymer having an MFR2 of 0.5 to 100 g/10 m in and obtained using single site catalysis comprising: (i) a propylene homopolymer or propylene ethylene copolymer matrix having up to 4 wt % ethylene; and (ii) an ethylene propylene rubber (EPR) dispersed in the matrix; said heterophasic propylene ethylene copolymer having a xylene cold soluble content (XS) of 20 to 40%; wherein the ethylene content of the xylene cold soluble fraction of said heterophasic propylene ethylene copolymer is between 70 and 90 wt. %; wherein the xylene cold soluble fraction of said heterophasic propylene ethylene copolymer has an intrinsic viscosity (IV) of 3.0 dl/g or more; and wherein the melting enthalpy (ΔHM) of the heterophasic propylene ethylene copolymer is between 10 and 30 J/g at a temperature of 0 to 130° C.
Abstract:
Propylene-ethylene random copolymers with improved long-term mechanical properties, especially improved impact strength retention, their manufacture as well as their use, e.g. for the production of moulded articles, particularly injection moulded articles, such as thin-walled plastic containers for packaging.
Abstract:
Synergistic visbreaking composition of peroxide and a hydroxylamine ester for increasing the visbreaking efficiency for polypropylene polymers at melt extrusion temperatures below 250° C. and its use in visbreaking polypropylene. The present invention is furthermore related to the use of such visbroken polypropylene polymers for producing melt blown non-wovens with improved barrier properties.
Abstract:
Propylene copolymer having a comonomer content in the range of 2.0 to 11.0 mol.-% and a melt flow rate MFR2 (230° C.) in the range of 25.0 to 100 g/10 min, wherein said propylene copolymer is featured by good toughness.
Abstract:
The present invention is directed to a new polypropylene composition comprising a propylene homopolymer and a polymeric nucleating agent, to melt-blown fibers comprising the polypropylene composition, to a melt-blown web comprising the melt-blown fibers and/or the polypropylene composition, to an article comprising the melt-blown fibers and/or the melt-blown web as well as to the use of the polypropylene composition for improving the relation between pressure drop and hydrohead of a melt-blown web and for improving the thermo-mechanical properties of a melt-blown web in machine direction (MD) and transverse direction (TD).
Abstract:
Use of one or more amino-triazine based Mannich-compounds and/or their dimers or trimers and/or one or more precondensate therefrom, including special new amino-triazine based Mannich-compounds, as antioxidant and/or UV-stabilizer for organic material, preferably for polymers; the stabilized material and use of the stabilized material.
Abstract:
The invention is directed to an alpha-nucleated polypropylene composition comprising two polypropylenes having different molecular weight and been produced with a metallocene catalyst