Abstract:
The disclosure provides a method for manufacturing an electrode for a double layer device comprising contacting a fibrous polymeric material and a carbon material to form a mixture, contacting the mixture with a liquid to form a slurry, and then forming a layer comprising the slurry. Also disclosed are layers formed from the recited methods, electrodes comprising the layers, and electrical devices comprising the layers and/or electrodes.
Abstract:
The invention is directed to a carbon composition produced from a carbon precursor, a carbon precursor modifier, and an additive, wherein a mixture of the recited components is formed, the carbon precursor is cured, the resulting mixture carbonized to produce a porous carbon composition. Also disclosed are methods for preparing the carbon composition and for using the carbon composition to fabricate electrodes and electric double layer capacitors comprising the carbon composition.
Abstract:
Methods and apparatus provide for: a silicon on insulator structure, comprising: a glass substrate; a layer of semiconductor material; and a deposited barrier layer of between about 60 nm to about 600 nm disposed between the glass substrate and the semiconductor material, where the glass substrate and semiconductor material are bonded together via electrolysis.
Abstract:
Semiconductor-on-insulator (SOI) structures, including large area SOI structures, are provided which have one or more regions composed of a layer (15) of a substantially single-crystal semiconductor (e.g., doped silicon) attached to a support substrate (20) composed of an oxide glass or an oxide glass-ceramic. The oxide glass or oxide glass-ceramic is preferably transparent and preferably has a strain point of less than 1000°C, a resistivity at 250°C that is less than or equal to 1016 -cm, and contains positive ions (e.g., alkali or alkaline-earth ions) which can move within the glass or glass-ceramic in response to an electric field at elevated temperatures (e.g., 300-1000°C). The bond strength between the semiconductor layer (15) and the support substrate (20) is preferably at least 8 joules/meter2. The semiconductor layer (15) can include a hybrid region (16) in which the semiconductor material has reacted with oxygen ions originating from the glass or glass-ceramic. The support substrate (20) preferably includes a depletion region (23) which has a reduced concentration of the mobile positive ions.
Abstract:
A coated flow-through substrate comprising a flow-through substrate and a sulfur- containing compound disposed as a coating on the flow-through substrate. The coated flow-through substrate may be used, for example, in the removal of a heavy metal from a fluid such as a gas stream.
Abstract:
Carbon materials and methods of manufacturing carbon materials for use in high energy devices, such as electric double layer capacitors are described. High energy devices manufactured with carbon materials contemplated herein have high energy density. Methods of manufacturing carbon materials generally include providing a carbon precursor and an additive, mixing the additive with the carbon precursor prior to curing the carbon precursor, carbonizing the carbon precursor and removing the additive to form the carbon material. Such carbon materials can be used in electric double layer capacitors.
Abstract:
Disclosed are methods and systems for regenerating mercury loaded activated carbon honeycomb catalyst beds. In one embodiment, the regeneration methods and systems disclosed herein can enable a more efficient and economical operation of a honeycomb based mercury removal system by, for example, allowing the reuse of a particular substrate multiple times.
Abstract:
Disclosed are methods for making SOI and SOG structures using ion shower for implanting ions to the donor substrate. The ion shower provides expedient, efficient, low-cost and effective ion implantation while minimizing damage to the exfoliation film.
Abstract:
Systems and methods related to an image sensor of one or more embodiments include subjecting a donor semiconductor wafer to an ion implantation process to create an exfoliation layer of semiconductor film on the donor semiconductor wafer, forming an anodic bond between the exfoliation layer and an insulator substrate by means of electrolysis; separating the exfoliation layer from the donor semiconductor wafer to transfer the exfoliation layer to the insulator substrate; and creating a plurality of image sensor features proximate to the exfoliation layer. Forming the anodic bonding by electrolysis may include the application of heat, pressure and voltage to the insulator structure and the exfoliation layer attached to the donor semiconductor wafer. Image sensor devices include an insulator structure, a semiconductor film, an anodic bond between them, and a plurality of image sensor features. The semiconductor film preferably comprises an exfoliation layer of a substantially single-crystal donor semiconductor wafer.
Abstract:
The invention concerns activated carbon honeycomb catalyst beds for removing mercury and other toxic metals from flue gas of a coal combustion system. The activated carbon honeycomb can remove greater than 90% mercury from flue gas with, a simple design and without adding material to the flue gas. A method for manufacturing the activated carbon honeycomb catalyst bed involves providing a honeycomb precursor batch composition comprising a synthetic carbon precursor and at least one toxic metal adsorption co-catalyst, shaping the batch composition to form a honeycomb green body, curing, heat treating and activating the carbonized synthetic carbon precursor.