Abstract:
Systems, methods, and computer-readable media are provided for determining a packet's round trip time (RTT) in a network. A system can receive information of a packet sent by a component of the network and further determine an expected acknowledgement (ACK) sequence number associated with the packet based upon received information of the packet. The system can receive information of a subsequent packet received by the component and determine an ACK sequence number and a receiving time of the subsequent packet. In response to determining that the ACK sequence number of the subsequent TCP packet matches the expected ACK sequence number, the system can determine a round trip time (RTT) of the packet based upon the received information of the packet and the received information of the subsequent packet.
Abstract:
An example method includes detecting, using sensors, packets throughout a datacenter. The sensors can then send packet logs to various collectors which can then identify and summarize data flows in the datacenter. The collectors can then send flow logs to an analytics module which can identify the status of the datacenter and detect an attack.
Abstract:
Flow data can be augmented with features or attributes from other domains, such as attributes from a source host and/or destination host of a flow, a process initiating the flow, and/or a process owner or user. A network can be configured to capture network or packet header attributes of a first flow and determine additional attributes of the first flow using a sensor network. The sensor network can include sensors for networking devices (e.g., routers, switches, network appliances), physical servers, hypervisors or container engines, and virtual partitions (e.g., virtual machines or containers). The network can calculate a feature vector including the packet header attributes and additional attributes to represent the first flow. The network can compare the feature vector of the first flow to respective feature vectors of other flows to determine an applicable policy, and enforce that policy for subsequent flows.
Abstract:
Application dependency mapping (ADM) can be automated in a network. The network can determine an optimum number of clusters for the network using the minimum description length principle (MDL). The network can capture network and associated data using a sensor network that provides multiple perspectives and generate a graph therefrom. The nodes of the graph can include sources, destinations, and destination ports identified in the captured data, and the edges of the graph can include observed flows from the sources to the destinations at the destination ports. Each clustering can be evaluated according to an MDL score. The optimum number of clusters for the network may correspond to the number of clusters of the clustering associated with the minimum MDL score.
Abstract:
This disclosure generally relate to a method and system for mapping application dependency information. The present technology relates techniques that enable user-adjustable application dependency mapping of a network system. By collecting internal network data using various sensors in conjunction with external user inputs, the present technology can provide optimized application dependency mapping using user inputs.
Abstract:
An example method includes detecting, using sensors, packets throughout a datacenter. The sensors can then send packet logs to various collectors which can then identify and summarize data flows in the datacenter. The collectors can then send flow logs to an analytics module which can identify the status of the datacenter and detect an attack.
Abstract:
An example method includes detecting, using sensors, packets throughout a datacenter. The sensors can then send packet logs to various collectors which can then identify and summarize data flows in the datacenter. The collectors can then send flow logs to an analytics module which can identify the status of the datacenter and detect an attack.
Abstract:
Systems, methods, and computer-readable media are provided for determining a packet's round trip time (RTT) in a network. A system can receive information of a packet sent by a component of the network and further determine an expected acknowledgement (ACK) sequence number associated with the packet based upon received information of the packet. The system can receive information of a subsequent packet received by the component and determine an ACK sequence number and a receiving time of the subsequent packet. In response to determining that the ACK sequence number of the subsequent TCP packet matches the expected ACK sequence number, the system can determine a round trip time (RTT) of the packet based upon the received information of the packet and the received information of the subsequent packet.
Abstract:
Systems and methods are provided for automatically discovering applications/clusters in a network and mapping dependencies between the applications/clusters. A network monitoring system can capture network flow data using sensors executing on physical and/or virtual servers of the network and sensors executing on networking devices connected to the servers. The system can determine a graph including nodes, representing at least the servers, and edges, between pairs of the nodes of the graph indicating the network flow data includes one or more observed flows between pairs of the servers represented by the pairs of the nodes. The system can determine a dependency map, including representations of clusters of the servers and representations of dependencies between the clusters, based on the graph. The system can display a first representation of a first cluster of the dependency map and information indicating a confidence level of identifying the first cluster.
Abstract:
An example method includes detecting, using sensors, packets throughout a datacenter. The sensors can then send packet logs to various collectors which can then identify and summarize data flows in the datacenter. The collectors can then send flow logs to an analytics module which can identify the status of the datacenter and detect an attack.