Abstract:
A curved sandwich impact structure for a vehicle having a micro-truss core. In one embodiment, the sandwich impact structure includes a micro-truss layer sandwiched between two facesheets, a micro-truss layer designed for energy absorption on the outside of one of the facesheets, and a fascia panel in contact with the energy absorbing micro-truss layer.
Abstract:
A mold comprising a scaffolding support structure including a base member, a top member and side members defining an enclosure. The scaffolding structure further includes a plurality of interconnected and elongated support members interspersed within the enclosure between the base member and the top member so as to define open space within the enclosure for ease of heating and cooling fluid flow, and a plurality of flow partitions within the enclosure. An intermediate layer is formed on the top member and a working surface layer is formed on the intermediate layer.
Abstract:
Some on-vehicle devices, such as air dams, air spoilers, and HVAC system baffles, may have movable components that are pulled from one position to another by shrinkage of a linear shape memory alloy (SMA) actuator. Upon an activation signal, the shrinkage of the SMA actuator occurs when it is resistance heated by an electrical current. It is found that useful information concerning the overall intended operation of the on-vehicle device may be obtained by computer analysis of the temporal variation of both current flow through the actuator and its electrical resistance as it is heated to perform its function in the device. A comparison of present current flow and variation of resistance, during activation of the device, with prescribed stored values can reveal malfunction of components of the device as it is being used, in place, on the vehicle.
Abstract:
A process for reinforcing a trim panel for a vehicle using one or more micro-truss reinforcement patches. Each micro-truss reinforcement patch is secured to an inner surface of a show surface panel of the trim panel while it is in a partially cured state and then fully cured. The micro-truss patch is fusion bonded to the panel.
Abstract:
A process for fabricating a curved beam including a micro-truss structure. In one embodiment, the process includes fabricating the micro-truss structure on a bottom facesheet, where the micro-truss structure is only partially cured so that it is readily bendable, and then forming the partially cured micro-truss structure and bottom facesheet over a curved fixture, where the partially cured micro-truss structure is then fully cured and hardened to its final curved state. A top facesheet is then adhered to a top surface of the micro-truss structure. In an alternate embodiment, a curved bottom facesheet is forced flat against a fixture and the micro-truss structure is formed while the bottom facesheet is secured to the fixture to a partially cured state. The bottom facesheet is then released from the fixture, which causes it to return to its curved configuration causing the micro-truss structure to bend.
Abstract:
A power adjusted seat assembly includes a seat, and is adapted for use when a resting load is present within the seat. The assembly further includes at least one reconfigurable seat structure shiftable between first and second permanent dimensions, orientations, positions, or conditions. An active material actuator is drivenly coupled to the structure. A mechanical transmission is drivenly coupled to the structure, so as to act in concert with the actuator, and is configured to receive and modify at least a portion of the load. The actuator and transmission are cooperatively configured to cause the structure to shift between the first and second permanent dimensions, orientations, positions, or conditions, when the resting load is present and the actuator is activated.
Abstract:
An actuation assembly adapted for driving a load, and protecting against overload conditions, includes an actuator defining a stroke, and an overload protection device including at least one elastic member having a nonlinear force-deflection characteristic defining a limit point and negative stiffness region, drivenly coupled to the actuator opposite the load, and operable to provide a secondary work output path when an overload condition exists.
Abstract:
A releasable connection connects a first component to a second component. The second component includes and is manufactured from a Shape Memory Polymer (SMP), and defines a pocket. The first component includes a portion disposed within the pocket. The pocket is deformed from an initial shape permitting insertion of the portion into the pocket to assembly the releasable connection into a connected shape wherein the pocket is deformed to secure the first component relative to the second component. The pocket is transformed from the initial shape into the connected shape by heating the SMP material of the second component to a switching temperature. Re-heating the SMP second component to the switching temperature returns the pocket back to the initial shape from the connected shape to disassembly the releasable connection.
Abstract:
A vehicle, suspension system and method of dampening a force on the suspension system is disclosed. The suspension system includes a damper having a first damping element and a second damping element configured to rotate relative to each other in response to a force received at the suspension system. The second damping element induces an eddy current in the first damping element during relative rotation. A feature of one at least one of the first damping element and the second damping element provides a first electrical resistance to the eddy current during relative rotation in a first direction and a second electrical resistance to the eddy current during relative rotation in a second direction. The first electrical resistance generates a first damping force and the second electrical resistance generates a second damping force.
Abstract:
An entry/egress system for a vehicle includes a housing mountable to a structural member in the vehicle. An actuator is arranged at the housing. The actuator is connectable to a source of electrical power in the vehicle. A lift mechanism is operatively connected to the actuator. A support member is operatively connected to the lift mechanism. The support member is selectively shiftable between a user entry position and a user egress position. A control system is operatively connected to the actuator. The control system is operable to shift the support member to one of the user entry position and the user egress position.