Abstract:
A system and method of identifying objects is provided. In one aspect, the system and method includes a hand-held device with a display, camera and processor. As the camera captures images and displays them on the display, the processor compares the information retrieved in connection with one image with information retrieved in connection with subsequent images. The processor uses the result of such comparison to determine the object that is likely to be of greatest interest to the user. The display simultaneously displays the images the images as they are captured, the location of the object in an image, and information retrieved for the object.
Abstract:
In one embodiment the present invention is a method for populating and updating a database of images of landmarks including geo-clustering geo-tagged images according to geographic proximity to generate one or more geo-clusters, and visual-clustering the one or more geo-clusters according to image similarity to generate one or more visual clusters. In another embodiment, the present invention is a system for identifying landmarks from digital images, including the following components: a database of geo-tagged images; a landmark database; a geo-clustering module; and a visual clustering module. In other embodiments the present invention may be a method of enhancing user queries to retrieve images of landmarks, or a method of automatically tagging a new digital image with text labels.
Abstract:
A system and method of identifying objects is provided. In one aspect, the system and method includes a hand-held device with a display, camera and processor. As the camera captures images and displays them on the display, the processor compares the information retrieved in connection with one image with information retrieved in connection with subsequent images. The processor uses the result of such comparison to determine the object that is likely to be of greatest interest to the user. The display simultaneously displays the images the images as they are captured, the location of the object in an image, and information retrieved for the object.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for selecting training images. One of the methods includes determining, for each of a plurality of labels that each designate a respective food class of a plurality of food classes, a respective measure of importance. A respective sample size is determined for the label based on the respective measure of importance of the label. A number of training images are selected for each respective label according to the determined sample size for the label. A predictive model is trained using the selected training images as training data.
Abstract:
A facial recognition search system identifies one or more likely names (or other personal identifiers) corresponding to the facial image(s) in a query as follows. After receiving the visual query with one or more facial images, the system identifies images that potentially match the respective facial image in accordance with visual similarity criteria. Then one or more persons associated with the potential images are identified. For each identified person, person-specific data comprising metrics of social connectivity to the requester are retrieved from a plurality of applications such as communications applications, social networking applications, calendar applications, and collaborative applications. An ordered list of persons is then generated by ranking the identified persons in accordance with at least metrics of visual similarity between the respective facial image and the potential image matches and with the social connection metrics. Finally, at least one person identifier from the list is sent to the requester.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for adjusting facial image search results. In one aspect, a method includes detecting, in images that are responsive to a query, faces in the images and building facial templates. The images are then clustered according to similarity measures of the facial templates. The cluster with the highest quantity is selected, and each image in the set of returned images is compared to each image in the selected cluster. The similarity of each face with the faces in the largest cluster, based on the facial templates, is determined as an inlier score for the image in which the face is depicted. The system then increases the rank of images with high inlier scores and decreases the rank of images with low inlier scores.
Abstract:
A system and computer-implemented method for associating images with semantic entities and providing search results using the semantic entities. An image database contains one or more source images associated with one or more images labels. A computer may generate one or more documents containing the labels associated with each image. Analysis may be performed on the one or more documents to associate the source images with semantic entities. The semantic entities may be used to provide search results. In response to receiving a target image as a search query, the target image may be compared with the source images to identify similar images. The semantic entities associated with the similar images may be used to determine a semantic entity for the target image. The semantic entity for the target image may be used to provide search results in response to the search initiated by the target image.
Abstract:
An image input is obtained from a computing device when an image sensor of the computing device is directed to a scene. At least an object of interest in the scene is determined, and a label is determined for the object of interest. A search input is received from the computing device, where the search input is obtained from a mechanism other than the image sensor. An ambiguity is determined from the search input. A search query is determined that augments or replaces the ambiguity based at least in part on the label. A search result is based on the search query.
Abstract:
Methods and systems for automatic detection of landmarks in digital images and annotation of those images are disclosed. A method for detecting and annotating landmarks in digital images includes the steps of automatically assigning a tag descriptive of a landmark to one or more images in a plurality of text-associated digital images to generate a set of landmark-tagged images, learning an appearance model for the landmark from the set of landmark-tagged images, and detecting the landmark in a new digital image using the appearance model. The method can also include a step of annotating the new image with the tag descriptive of the landmark.
Abstract:
Implementations generally relate to face template balancing. In some implementations, a method includes generating face templates corresponding to respective images. The method also includes matching the images to a user based on the face templates. The method also includes receiving a determination that one or more matched images are mismatched images. The method also includes flagging one or more face templates corresponding to the one or more mismatched images as negative face templates.