Abstract:
A system may include a tether, a slip ring, a tether gimbal assembly, a drive mechanism, a control system. The tether may include a distal tether end coupled to an aerial vehicle, a proximate tether end, and at least one insulated electrical conductor coupled to the aerial vehicle. The slip ring may include a fixed portion and a rotatable portion, where the rotatable portion is coupled to the tether. The tether gimbal assembly may be rotatable about at least one axis and is coupled to the fixed portion of the slip ring. The drive mechanism may be coupled to the slip ring and configured to rotate the rotatable portion of the slip ring. And the control system may be configured to operate the drive mechanism to control twist in the tether.
Abstract:
A system may include a tether, a tether gimbal assembly, a drive mechanism, and a control system. The tether may include a distal end, a proximate end, and at least one conductor. The tether gimbal assembly may be connected to the tether. The drive mechanism may be coupled to the tether gimbal assembly and may include a housing, a spindle, and a motor. The housing may be fixed to the tether gimbal assembly. The spindle may be rotatably coupled to the housing, and the tether may be coupled to the spindle and rotate in conjunction with the spindle. The motor may be coupled to the spindle and configured to rotate the spindle and the tether. And the control system may be configured to operate the drive mechanism to control twist in the tether.
Abstract:
An aerial vehicle including a fuselage, a main wing attached to the fuselage, a support structure extending upwardly from the fuselage and having a front surface facing the main wing, an overhang positioned on a top of the support structure and extending towards the main wing, one or more rotating actuators positioned on the overhang, a rear elevator attached to the one or more rotating actuators that are configured to move the rear elevator from a flying mode position where a leading edge of the rear elevator faces the main wing to a hover mode position where the major surfaces of the rear elevator faces the main wing, and wherein the major surfaces of the rear elevator remain in front of the front surface of the support structure when the rear elevator is moved from the flying mode position to the hover mode position.
Abstract:
A drum for storing an electrically conductive tether having a first end secured to an aerial vehicle and a second end secured to a ground station that includes a drum frame rotatable about a drum axis, a drum surface positioned over the drum frame comprising a spiral extrusion wrapped around the drum frame, wherein the extrusion has a cross-section having an upper surface that is shaped to conform to an outer surface of the electrically conductive tether, and wherein the extrusion is adapted for dissipating heat generated through a transfer of electricity from the aerial vehicle to a ground station through the electrically conductive tether.
Abstract:
A drum for storing an electrically conductive tether having a first end secured to an aerial vehicle and a second end secured to a ground station that includes a drum frame rotatable about a drum axis, a drum surface positioned over the drum frame comprising a spiral extrusion wrapped around the drum frame, wherein the extrusion has a cross-section having an upper surface that is shaped to conform to an outer surface of the electrically conductive tether, and wherein the extrusion is adapted for dissipating heat generated through a transfer of electricity from the aerial vehicle to a ground station through the electrically conductive tether.
Abstract:
A method involves operating an aerial vehicle in a hover-flight orientation. The aerial vehicle is connected to a tether that defines a tether sphere having a radius based on a length of the tether, and the tether is connected to a ground station. The method involves positioning the aerial vehicle at a first location that is substantially on the tether sphere. The method involves transitioning the aerial vehicle from the hover-flight orientation to a forward-flight orientation, such that the aerial vehicle moves from the tether sphere. And the method involves operating the aerial vehicle in the forward-flight orientation to ascend at an angle of ascent to a second location that is substantially on the tether sphere. The first and second locations are substantially downwind of the ground station.
Abstract:
A drum for storing an electrically conductive tether having a first end secured to an aerial vehicle and a second end secured to a ground station that includes a drum frame rotatable about a drum axis, a drum surface positioned over the drum frame comprising a spiral extrusion wrapped around the drum frame, wherein the extrusion has a cross-section having an upper surface that is shaped to conform to an outer surface of the electrically conductive tether, and wherein the extrusion is adapted for dissipating heat generated through a transfer of electricity from the aerial vehicle to a ground station through the electrically conductive tether.
Abstract:
A method may involve operating an aerial vehicle to travel along a first closed path on a tether sphere while oriented in a crosswind-flight orientation. A tether may be connected to the aerial vehicle on a first end and may be connected to a ground station on a second end. Further, the tether sphere may have a radius corresponding to a length of the tether. The method may further involve while the aerial vehicle is in the crosswind-flight orientation, operating the aerial vehicle to travel along a second closed path on the tether sphere, such that a speed of the aerial vehicle is reduced. And the method may involve after or while the speed of the aerial vehicle is reduced, transitioning the aerial vehicle from traveling along the second closed path while in the crosswind-flight orientation to a hover-flight orientation.
Abstract:
Systems and methods are provided for a wiring harness for an aerial vehicle. A wing of the aerial vehicle comprises a pocket for insertion of the wiring harness. The wiring harness provides wiring and associated connections capable to attach to and power various components.
Abstract:
Wind energy systems, such as an Airborne Wind Turbine (“AWT”), may be used to facilitate conversion of kinetic energy to electrical energy. An AWT may include an aerial vehicle that flies in a path to convert kinetic wind energy to electrical energy. The aerial vehicle may be tethered to a ground station with a tether that terminates at a tether termination mount. In one aspect, the tether may be a conductive tether that can transmit electricity and/or electrical signals back and forth between the aerial vehicle and the ground station. The tether termination mount may include one or more gimbals that allow for the tether termination mount to rotate about one or more axis. In a further aspect, the tether termination mount may include a slip ring that allows for rotation of the tether without twisting the tether.