Abstract:
An apparatus for comminuting material includes two disks arranged coaxially to one another inside a housing that encloses a comminuting room. At least part of the opposing surfaces of the disks are provided with interacting comminuting tools thus forming a comminuting zone, whereby at least one of the disks rotates around a mutual axis to generate a relative movement of the disks. At the same time, the material, which is a mixture of gaseous and solid materials is axially fed by one of the disks into the comminuting room and is radially conveyed to the comminuting zone. Thereby, cooling gas is additionally channeled into the comminuting room. The comminuting room is partitioned into one chamber through which the mixture of gaseous and solid materials flows, and at least one additional chamber dedicated to the cooling gas.
Abstract:
A device for comminuting input material, especially for fine and ultrafine grinding of input material, includes a rotor revolving around a shaft inside a housing, the rotor having a cylindrical or conical jacket surface. An annular gap is present between the housing and the jacket surface, the gap forming a comminution zone and the input material being introduced axially to it. To increase the economic efficiency of the device, it is provided that a plurality of first pin-shaped comminuting tools for comminuting the input material are disposed over the circumference of the rotor, wherein the tools are aligned with their longitudinal direction perpendicular to the jacket surface in the direction of the housing.
Abstract:
A device for comminuting scrappable feedstock by way of cutting or shear-cutting is provided that includes at least one rotor situated within a housing. The rotor has a plurality of rotary disks which are situated at an axial distance from each other, forming spaces, and which are fitted on their circumferences with comminuting tools which interact with additional comminuting tools to perform the comminution work. Stationary scraping elements extend into the spaces in the radial direction. To achieve a largely unhindered flow of stock through the device, it is proposed according to the invention to situate the stationary scraping elements in the dead zone of the at least one rotor with regard to the direction of stock flow.
Abstract:
A device for comminuting feedstock is provided that includes a cutting tool with a first rotor and at least one second rotor, each of which rotate around their longitudinal axis with an opposite rotation direction. Each rotor is provided with a number of cutting discs, which are arranged at an axial distance to one another. In this case, the cutting discs of the first rotor are located on gaps and with radial overlapping relative to the cutting discs of the second rotor. The cutting discs along their circumference have support surfaces for accepting cutting tools, whose cutting edges move past one another over the course of the rotation of rotors with the formation of a cutting clearance. For the positionally precise fixation of the cutting tool on the cutting discs, a positive fit is formed between the cutting tools and cutting discs, a positive fit groove running in the plane of the cutting disc is arranged in the common contact area, the groove in which at least one positive fit strip engages.
Abstract:
An apparatus and a method for producing woodfuel briquettes, pellets, compounds, composites, agglomerates, or granulates as source material for subsequent processing in injection molding or extrusion processes, includes a pressing screw with screw spirals, which rotate around a longitudinal axis and which are arranged inside a screw shell. The feed material is conveyed to the pressing screw via a feed chute located at an input side. At the end of the pressing screw, processing tools are arranged, to which the feed material is conveyed by the rotating screw spirals. In the area of the processing tools, the residual moisture in the feed material evaporates due to the heat generated during the processing procedure, and is vented as a steam flow from the apparatus through the screw shell. In order to prevent the steam flow from carrying away part of the feed material, the apparatus includes an expansion chamber, through which the escaping steam flow is channeled, and the flow-through cross section of which is such that it causes the steam flow to decelerate. As a result of the deceleration of the steam flow in the expansion chamber, the particles of the feed material that were carried off by the steam flow can be returned to the feed material.
Abstract:
A device for comminuting scrappable feedstock by way of cutting or shear-cutting is provided that includes at least one rotor situated within a housing. The rotor has a plurality of rotary disks which are situated at an axial distance from each other, forming spaces, and which are fitted on their circumferences with comminuting tools which interact with additional comminuting tools to perform the comminution work. Stationary scraping elements extend into the spaces in the radial direction. To achieve a largely unhindered flow of stock through the device, it is proposed according to the invention to situate the stationary scraping elements in the dead zone of the at least one rotor with regard to the direction of stock flow.
Abstract:
The invention is directed to a device for converting free-flowing feed material by pressurization with a cylindrical compression chamber arranged around an axis and confined at its periphery by a ring element with passage openings, and accommodating a pressure element that rotates around the axis in the direction of rotation. The feed material is axially conveyed to the compression chamber and is radially supplied to the ring element by the pressure element. The pressure element includes at least one pressing blade, which extends to and interacts with the ring element, the front flank of said pressing blade in the direction of rotation being curved such that between pressure arm and ring element, a narrowing compression zone is formed, the end of which is formed by a pressure piece.
Abstract:
An apparatus and a method for producing woodfuel briquettes, pellets, compounds, composites, agglomerates, or granulates as source material for subsequent processing in injection molding or extrusion processes, includes a pressing screw with screw spirals, which rotate around a longitudinal axis and which are arranged inside a screw shell. The feed material is conveyed to the pressing screw via a feed chute located at an input side. At the end of the pressing screw, processing tools are arranged, to which the feed material is conveyed by the rotating screw spirals. In the area of the processing tools, the residual moisture in the feed material evaporates due to the heat generated during the processing procedure, and is vented as a steam flow from the apparatus through the screw shell. In order to prevent the steam flow from carrying away part of the feed material, the apparatus includes an expansion chamber, through which the escaping steam flow is channeled, and the flow-through cross section of which is such that it causes the steam flow to decelerate. As a result of the deceleration of the steam flow in the expansion chamber, the particles of the feed material that were carried off by the steam flow can be returned to the feed material.
Abstract:
An apparatus is disclosed for converting feed material into granules under the application of pressure. The apparatus includes a conveyor screw arranged about an axis of rotation with at least one screw spiral, a rotationally symmetric working chamber arranged about the axis of rotation, which chamber is formed by two annular walls arranged at an axial distance from one another and by an annular perforated die. The annular wall has a central opening arranged coaxial to the axis of rotation into which the conveyor screw discharges in order to feed the working chamber with feed material. The apparatus also includes a pressure element that rotates about the axis of rotation and has at least one pressure arm, which extends from the axis of rotation toward the perforated die delivers the axially supplied feed material to the perforated die in the radial direction, and compacts it while doing so.
Abstract:
An apparatus for comminuting material is provided. The apparatus includes two disks, which are arranged coaxially to one another inside a housing that encloses a comminuting room. The rim areas of the disks are positioned opposite one another, thus forming a milling gap, and are provided with interacting comminuting tools. To generate a mutual relative movement of the disks, at least one of the disks carries out a rotational motion around the mutual axis. To comminute the material, it is first fed into the comminuting room and subsequently radially channeled to the milling gap. For additional cooling, the disk on the intake side is arranged at an axial distance to the intake side of the housing front wall, thus forming a ringwheel-shaped cool air conduit. This can be charged with cool air, which flows through the conduit in a radial direction. In this way, the machine capacity can be increased without causing thermal damage to the material to be processed.