Abstract:
An optical fiber coupler includes a male port and a female port. The male port includes a main body, a positioning post and two lenses mounted on the body, and a first transmitting optical fiber and a first receiving optical fiber received in the main body. The first transmitting optical fiber and the first receiving optical fiber are coupled with corresponding optical fibers. The positioning post includes a columnar body and a conical frustum body. The female port includes a base body, a second transmitting optical fiber and a second receiving optical fiber received in the base body, two lenses coupling with the optical fibers. The base body defines a positioning hole corresponding to the positioning post. The positioning hole includes a columnar portion and a conical frustum portion.
Abstract:
An optical fiber connector includes a body and a photoelectric conversion module received in the body. The photoelectric conversion module includes a base, a light emitting unit, a light receiving unit, and a light coupling block. The light emitting unit and the light receiving unit are fixed on the base. The light coupling blocks are formed on the base and are arranged over the light emitting unit and the light receiving unit. The light emitting unit is configured for emitting light to the light coupling block in a first direction. The light coupling block is configured for reflecting the light from the light emitting unit to a second direction perpendicular to the first direction. The light receiving unit is configured for receiving light emitting from the light coupling block in a direction opposite to the first direction.
Abstract:
An optical fiber connector includes a number of optical fibers, a body, a number of supports and a cover. The body includes a number of lens portions at a first end thereof, a number of through holes at an opposite second end, and a recess located between the lens portions and the through holes. The through holes are in communication with the recess. The optical fibers extend through the respective through holes and terminate at the respective lens portions. The supports are formed in the recess. Each support supports and retains a portion of the corresponding optical fiber exposed in the recess. The cover is received in the recess. The cover has a number of slanted faces spatially corresponding to the respective supports. The slanted faces and the supports cooperatively securely sandwich the exposed portions of the optical fibers in the body.
Abstract:
An optical fiber connector includes an optical fiber cable including two optical fibers; and a connector plug connected to opposite ends of the optical fiber cable for electrical connection to an electronic device. The connector plug includes a shell, a photodiode, a laser diode; and an electrical connector for electrical connection to an electronic device. The photodiode, the laser diode and the electrical connector are housed in the metallic shell, the photodiode is optically coupled to a distal end of one corresponding optical fiber and electrically coupled to the electrical connector, the laser diode optically is coupled to a distal end of the other optical fiber and electrically coupled to the electrical connector.
Abstract:
An optical fiber connector includes a coupling portion. The coupling portion includes a first end surface and an opposite second end surface. The first end surface includes a number of lenses arranged thereat and a number of engaging holes formed therein. The second end surface includes a number of optical fiber holes formed therein and aligned with the respective lenses, and a number of posts formed thereon. Each of the posts has a spring member arranged thereon.
Abstract:
A mold for fabricating an optical fiber connector is disclosed. The optical fiber connector includes a blind hole for accommodating an optical fiber and an aspherical lens portion for optically coaxial with the optical fiber. The mold includes a rod-shaped core for forming the blind hole and a plate-shaped core. The plate-shaped core includes an aspherical recess for forming the lens portion. The aspherical recess faces the rod-shaped core, and is adjustably movable relative to the first core so as to achieve alignment between the aspherical recess and the rod-shaped core.
Abstract:
A display device includes a projector assembly, an actuator, a panel element, and a number of mirrors. The projector assembly projects lights of an image. The actuator rotates the projector assembly about a rotating axis. The panel element includes a number of panel surfaces. The panel surfaces adjoin one another in sequence along the rotating axis. The mirrors are arranged in sequence along the rotating axis. The mirrors are oriented toward the respective panel surfaces for adjusting transmission directions of the lights to project the image onto the respective panel surfaces.
Abstract:
A mold for molding optical fiber connector includes a core pin, a cavity mold and a sprue hole defined on the sidewall of the cavity mold. The core pin is used to mold the blind hole of the optical fiber connector. The cavity mold and the core mold cooperatively define a molding cavity for forming the optical fiber connector. A support block is configured in the molding cavity. The molding cavity includes a lens forming portion used to mold the lens and the support block configures a cutout to support the blind hole forming portion to make the blind hole forming portion align with the lens forming portion during the molding process, the opening of the cutout is towards the sprue hole.
Abstract:
A mold for molding optical fiber connector includes a core pin, a core mold and a cavity mold. The core pin has insertion portion and a blind hole forming portion. The core mold defines a hole for receiving the insertion portion. The cavity mold attaches to the core mold and cooperatively defines a molding cavity for forming the optical fiber connector. The cavity mold includes a lens forming portion and a support block in the molding cavity. The core pin aligns with the lens forming portion and the blind hole forming portion thereof is exposed in the molding cavity. The support block is configured for holding the blind hole forming portion and maintaining alignment between the core pin and the lens forming portion.
Abstract:
An optical fiber coupler includes a receiving interface and two lenses. The receiving interface is configured for matching and connecting to an external optical fiber of a particular diameter within a range of 62.5 μm to 100 μm, and for receiving optical signals from the external optical fiber. The two lenses are configured for coupling the received optical signals. A distance between the two lenses falls within a range from 0.5 mm to 0.95 mm. A curvature radius of each of the two lenses falls within a range from 0.3579 mm to 0.3898 mm.