Abstract:
Embodiments of multinode hubs for trust operations are disclosed herein. In some embodiments, a multinode hub may include a plurality of memory regions, a trapping module, and a trusted platform module (TPM) component. Each memory region may be associated with and receive trust operation data from a coherent computing node. The trapping module may generate trap notifications in response to accesses to the plurality of memory regions by the associated coherent computing nodes. The trap notifications may indicate which of the plurality of memory locations has been accessed, and the TPM component may process the trust operation data in a memory region indicated by a trap notification. Other embodiments may be disclosed and/or claimed.
Abstract:
In one embodiment, a peripheral controller coupled to a processor can include a storage controller. This storage controller can control access to a non-volatile storage coupled to the peripheral controller. The storage may include both secure and open partitions, and the storage controller can enable access to the secure partition only when the processor is in a secure mode. In turn, during unsecure operation such as third party code execution, visibility of the secure partition can be prevented. Other embodiments are described and claimed.
Abstract:
Methods and apparatus relating to pre-OS (pre Operating System) image rewriting to provide cross-architecture support, security introspection, and/or performance optimization are described. In an embodiment, logic rewrites a non-native firmware interface driver into a native firmware interface driver in response to a determination that sufficient space is available in an integrity cache storage device to store the native firmware interface driver. The logic rewrites the non-native firmware interface driver into the native firmware interface driver by performing one or more of its operations during operating system runtime. Other embodiments are also claimed and described.
Abstract:
Radio frequency identification (RFID) tags embedded in processors within a computing system provide a separate communication path to other components of the computing system during initialization processing, apart from the system interconnect. Upon powering up, each processor causes its RFID tag to broadcast data regarding the processor's interconnect location and initialization status. A RFID receiver senses the RFID tags in the Platform Control Hub (PCH), and each processor's interconnect location and initialization status data is stored in registers within the PCH. During system initialization processing, the BIOS accesses these PCH registers to obtain the processor's data. The interconnect location and initialization status data is used by the BIOS to select the optimal routing table and configure the virtual network within the computing system based on the optimal routing table and the RFID tag data, without interrogating each processor individually over the system interconnect.
Abstract:
An embodiment includes a secure and stable method for sending information across a compute continuum. For example, the method may include executing an application (e.g., video player) on a first node (e.g., tablet) with a desire to perform "context migration" to a second node (e.g., desktop). This may allow a user to watch a movie on the tablet, stop watching the movie, and then resume watching the movie from the desktop. To do so in a secure and stable manner, the first node may request security and performance credentials from the second node. If both credential sets satisfy thresholds, the first node may transfer content (e.g., encrypted copy of a movie) and state information (e.g., placeholder indicating where the movie was when context transfer began). The second node may then allow the user to resume his or her movie watching from the desktop. Other embodiments are described herein.
Abstract:
Embodiments of multinode hubs for trust operations are disclosed herein. In some embodiments, a multinode hub may include a plurality of memory regions, a trapping module, and a trusted platform module (TPM) component. Each memory region may be associated with and receive trust operation data from a coherent computing node. The trapping module may generate trap notifications in response to accesses to the plurality of memory regions by the associated coherent computing nodes. The trap notifications may indicate which of the plurality of memory locations has been accessed, and the TPM component may process the trust operation data in a memory region indicated by a trap notification. Other embodiments may be disclosed and/or claimed.
Abstract:
Generally, this disclosure provides systems, devices, methods and computer readable media for a Unified Extensible Firmware Interface (UEFI) with durable storage to provide memory write persistence, for example, in the event of power loss. The system may include a processor to host the firmware interface which may be configured to control access to system variables in a protected region of a volatile memory. The system may also include a power management circuit to provide power to the processor and further to provide a power loss indicator to the firmware interface. The system may also include a reserve energy storage module to provide power to the processor in response to the power loss indicator. The firmware interface is further configured to copy the system variables from the volatile memory to a non-volatile memory in response to the power loss indicator.
Abstract:
Embodiments of multinode hubs for trust operations are disclosed herein. In some embodiments, a multinode hub may include a plurality of memory regions, a trapping module, and a trusted platform module (TPM) component. Each memory region may be associated with and receive trust operation data from a coherent computing node. The trapping module may generate trap notifications in response to accesses to the plurality of memory regions by the associated coherent computing nodes. The trap notifications may indicate which of the plurality of memory locations has been accessed, and the TPM component may process the trust operation data in a memory region indicated by a trap notification. Other embodiments may be disclosed and/or claimed.
Abstract:
Platform controller, computer-readable storage media, and methods associated with initialization of a computing device. In embodiments, a platform controller may comprise a boot controller and one or more non-volatile memory modules, coupled with the boot controller. In embodiments, the one or more non-volatile memory modules may have first instructions and second instructions stored thereon. The first instructions may, when executed by a processor of a computing device hosting the platform controller, cause initialization of the computing device. The second instructions, when executed by the boot controller, may cause the boot controller to monitor at least a portion of the execution of the first instructions by the computing device and may generate a trace of the monitored portion of the execution of the first instructions. In embodiments, the trace may be stored in the one or more non-volatile memory modules. Other embodiments may be described and/or claimed.