Abstract:
Hardware apparatuses and methods for distributed durable and atomic transactions in non-volatile memory are described. In one embodiment, a hardware apparatus includes a hardware processor, a plurality of hardware memory controllers for each of a plurality of non-volatile data storage devices, and a plurality of staging buffers with a staging buffer for each of the plurality of hardware memory controllers, wherein each of the plurality of hardware memory controllers are to: write data of a data set that is to be written to the plurality of non-volatile data storage devices to their staging buffer, send confirmation to the hardware processor that the data is written to their staging buffer, and write the data from their staging buffer to their non-volatile data storage device on receipt of a commit command.
Abstract:
Hardware apparatuses and methods for distributed durable and atomic transactions in non-volatile memory are described. In one embodiment, a hardware apparatus includes a hardware processor, a plurality of hardware memory controllers for each of a plurality of non-volatile data storage devices, and a plurality of staging buffers with a staging buffer for each of the plurality of hardware memory controllers, wherein each of the plurality of hardware memory controllers are to: write data of a data set that is to be written to the plurality of non-volatile data storage devices to their staging buffer, send confirmation to the hardware processor that the data is written to their staging buffer, and write the data from their staging buffer to their non-volatile data storage device on receipt of a commit command.
Abstract:
An apparatus and method are described for store durability and ordering in a persistent memory architecture. For example, one embodiment of a method comprises: performing at least one store operation to one or more addresses identifying at least one persistent memory device, the store operations causing one or more memory controllers to store data in the at least one persistent memory device; sending a request message to the one or more memory controllers instructing the memory controllers to confirm that the store operations are successfully committed to the at least one persistent memory device; ensuring at the one or more memory controllers that at least all pending store operations received at the time of the request message will be committed to the persistent memory device; and sending a response message from the one or more memory controllers indicating that the store operations are successfully committed to the persistent memory device.
Abstract:
A server is provided. The server comprises one or more interfaces configured to communicate with a client and processing circuitry configured to control the one or more interfaces and to transmit an interrupt to the client informing the client about an operation state of the server.
Abstract:
Methods and apparatus for PASID-based routing extension for Scalable IOV systems. The system may include a Central Processing Unit (CPU) operatively coupled to a scalable Input/Output Virtualization (IOV) device via an in-line device such as a smart controller or accelerator. A Control Process Address Space Identifier (C-PASID) associated with a first memory space is implemented in an Assignable Device Interface (ADI) for the IOV device. The ADI also implements a Data PASID (D-PASID) associated with a second memory space in which data are stored. The C-PASID is used to fetch a descriptor in the first memory space and the D-PASID is employed to fetch data in the second memory space. A hub embedded on the in-line device or implemented as a discrete device is used to steer memory access requests and/or fetches to the CPU or to the in-line device using the C-PASID and D-PASID. IOV devices include multi-PASID helper devices and off-the-shelf devices such as NICs with modified ADIs to support C-PASID and D-PASID usage.
Abstract:
Embodiments of apparatuses, methods, and systems for unified address translation for virtualization of input/output devices are described. In an embodiment, an apparatus includes first circuitry to use at least an identifier of a device to locate a context entry and second circuitry to use at least a process address space identifier (PASID) to locate a PASID-entry. The context entry is to include at least one of a page-table pointer to a page-table translation structure and a PASID. The PASID-entry is to include at least one of a first-level page-table pointer to a first-level translation structure and a second-level page-table pointer to a second-level translation structure. The PASID is to be supplied by the device. At least one of the apparatus, the context entry, and the PASID entry is to include one or more control fields to indicate whether the first-level page-table pointer or the second-level page-table pointer is to be used.
Abstract:
Techniques for transferring virtual machines and resource management in a virtualized computing environment are described. In one embodiment, for example, an apparatus may include at least one memory, at least one processor, and logic for transferring a virtual machine (VM), at least a portion of the logic comprised in hardware coupled to the at least one memory and the at least one processor, the logic to generate a plurality of virtualized capability registers for a virtual device (VDEV) by virtualizing a plurality of device-specific capability registers of a physical device to be virtualized by the VM, the plurality of virtualized capability registers comprising a plurality of device-specific capabilities of the physical device, determine a version of the physical device to support via a virtual machine monitor (VMM), and expose a subset of the virtualized capability registers associated with the version to the VM. Other embodiments are described and claimed.
Abstract:
Embodiments of apparatuses, methods, and systems for unified address translation for virtualization of input/output devices are described. In an embodiment, an apparatus includes first circuitry to use at least an identifier of a device to locate a context entry and second circuitry to use at least a process address space identifier (PASID) to locate a PASID-entry. The context entry is to include at least one of a page-table pointer to a page-table translation structure and a PASID. The PASID-entry is to include at least one of a first-level page-table pointer to a first-level translation structure and a second-level page-table pointer to a second-level translation structure. The PASID is to be supplied by the device. At least one of the apparatus, the context entry, and the PASID entry is to include one or more control fields to indicate whether the first-level page-table pointer or the second-level page-table pointer is to be used.
Abstract:
Embodiments of apparatuses, methods, and systems for unified address translation for virtualization of input/output devices are described. In an embodiment, an apparatus includes first circuitry to use at least an identifier of a device to locate a context entry and second circuitry to use at least a process address space identifier (PASID) to locate a PASID-entry. The context entry is to include at least one of a page-table pointer to a page-table translation structure and a PASID. The PASID-entry is to include at least one of a first-level page-table pointer to a first-level translation structure and a second-level page-table pointer to a second-level translation structure. The PASID is to be supplied by the device. At least one of the apparatus, the context entry, and the PASID entry is to include one or more control fields to indicate whether the first-level page-table pointer or the second-level page-table pointer is to be used.
Abstract:
Embodiments of apparatuses, methods, and systems for highly scalable accelerators are described. In an embodiment, an apparatus includes an interface to receive a plurality of work requests from a plurality of clients and a plurality of engines to perform the plurality of work requests. The work requests are to be dispatched to the plurality of engines from a plurality of work queues. The work queues are to store a work descriptor per work request. Each work descriptor is to include all information needed to perform a corresponding work request.